• Title/Summary/Keyword: Primary User

Search Result 632, Processing Time 0.024 seconds

Receiver-Centric Spectrum Sensing for Cognitive Radio Systems (무선인지 시스템을 위한 수신기 중심 스펙트럼 센싱 기술)

  • Shin, Oh-Soon
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.48 no.2
    • /
    • pp.43-48
    • /
    • 2011
  • Cognitive radio is accepted as an effective and promising approach for resolving the spectrum scarcity problem by allowing secondary users to borrow unused spectrum from primary users. A method of identifying busy and empty spectrum at the given time and space, which is called spectrum sensing, constitutes an essential element of the cognitive radio. In this paper, we propose a receiver-centric spectrum sensing scheme which attempts to detect the primary receiver rather than the primary transmitter. It is shown that the proposed receiver-centric sensing approach results in more efficient spectrum utilization than the conventional transmitter-centric sensing.

Distributed Coordination Protocol for Ad Hoc Cognitive Radio Networks

  • Kim, Mi-Ryeong;Yoo, Sang-Jo
    • Journal of Communications and Networks
    • /
    • v.14 no.1
    • /
    • pp.51-62
    • /
    • 2012
  • The exponential growth in wireless services has resulted in an overly crowded spectrum. The current state of spectrum allocation indicates that most usable frequencies have already been occupied. This makes one pessimistic about the feasibility of integrating emerging wireless services such as large-scale sensor networks into the existing communication infrastructure. Cognitive radio is an emerging dynamic spectrum access technology that can be used for flexibly and efficiently achieving open spectrum sharing. Cognitive radio is an intelligent wireless communication system that is aware of its radio environment and that is capable of adapting its operation to statistical variations of the radio frequency. In ad hoc cognitive radio networks, a common control channel (CCC) is usually used for supporting transmission coordination and spectrum-related information exchange. Determining a CCC in distributed networks is a challenging research issue because the spectrum availability at each ad hoc node is quite different and dynamic due to the interference between and coexistence of primary users. In this paper, we propose a novel CCC selection protocol that is implemented in a distributed way according to the appearance patterns of primary systems and connectivity among nodes. The proposed protocol minimizes the possibility of CCC disruption by primary user activities and maximizes node connectivity when the control channel is set up. It also facilitates adaptive recovery of the control channel when the primary user is detected on that channel.

BBA based Power Scaling Method in Cognitive Radio Technique for WPAN (WPAN을 위한 무선인지기술에서의 BBA 기반 전력할당기법)

  • Kim, Dae-Ik;Cho, Ju-Phil;Cha, Jae-Sang
    • Journal of Broadcast Engineering
    • /
    • v.14 no.1
    • /
    • pp.89-92
    • /
    • 2009
  • In this paper, we discuss the BBA based power scaling scheme in cognitive radio technique for WPAN system. We focus on Cognitive Radio environment which is currently ongoing standard procedure and is able to focus on future communication and show the transmitted power scaling of CR user. We suggest the available communication method of CR user, while it is simultaneously satisfying both minimum interference of PU(Primary User) and possible communication of CR user. The method is using the BBA, and we show several merits in face of received SINR. and we prove that CR vary its transmit power while maintaining a guarantee of service to primary users.

Adaptive Cooperation for Bidirectional Communication in Cognitive Radio Networks

  • Gao, Yuan;Zhu, Changping;Deng, Zhixiang;Tang, Yibin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.3
    • /
    • pp.1279-1300
    • /
    • 2017
  • In the interweave cognitive networks, the interference from the primary user degrades the performance of the cognitive user transmissions. In this paper, we propose an adaptive cooperation scheme in the interweave cognitive networks to improve the performance of the cognitive user transmissions. In the proposed scheme for the bidirectional communication of two end-source cognitive users, the bidirectional communication is completed through the non-relay direct transmission, the one-way relaying cooperation transmission, and the two-way relaying cooperation transmission depending on the limited feedback from the end-sources. For the performance analysis of the proposed scheme, we derive the outage probability and the finite-SNR diversity multiplexing tradeoff (f-DMT) in a closed form, considering the imperfect spectrum sensing, the interference from the primary user, and the power allocation between the relay and the end-sources. The results show that compared with the direct transmissions (DT), the pure one-way relaying transmissions (POWRT), and the pure two-way relaying transmissions (PTWRT), the proposed scheme has better outage performance. In terms of the f-DMT, the proposed scheme outperforms the full cooperation transmissions of the POWRT and PTWRT.

An Efficient Power Processing Method for Cognitive Radio (Cognitive Radio에 적합한 효율적인 전력 처리기법)

  • Cho, Ju-Phil
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.8 no.2
    • /
    • pp.43-48
    • /
    • 2008
  • In this paper, we discuss the transmit power of user in Cognitive Radio environment. Transmit power of user should be operated in order not to give a bad effect to PU(Primary user) and this power can be considered as SINR(Signal to Interference and Noise Ratio) measured in PU. Exact spectrum sensing is required to see which is the vacant frequency. And this spectrum sensing should be operated repeatedly within certain time because the vacant frequency is time-varying. In this paper, we reduce the existing defect by using orthogonal parameter and show the sensing operation is possible if SINR of PU can be guaranteed.

  • PDF

Linear-Quadratic Detectors for Spectrum Sensing

  • Biglieri, Ezio;Lops, Marco
    • Journal of Communications and Networks
    • /
    • v.16 no.5
    • /
    • pp.485-492
    • /
    • 2014
  • Spectrum sensing for cognitive-radio applications may use a matched-filter detector (in the presence of full knowledge of the signal that may be transmitted by the primary user) or an energy detector (when that knowledge is missing). An intermediate situation occurs when the primary signal is imperfectly known, in which case we advocate the use of a linear-quadratic detector. We show how this detector can be designed by maximizing its deflection, and, using moment-bound theory, we examine its robustness to the variations of the actual probability distribution of the inaccurately known primary signal.

Performance Analysis of Multiple Access for Secondary Users in The Spectrum Sensing Cognitive Radio (스펙트럼 감지 무선 인지 네트워크에서 이차 사용자들의 다중 접속 성능 분석)

  • Hong, Seung Geun;Lee, Jae Hong
    • Journal of Broadcast Engineering
    • /
    • v.21 no.1
    • /
    • pp.113-116
    • /
    • 2016
  • Cognitive radio network technology is that secondary (unlicensed) users use the spectrum of primary (licensed) users without interfering primary communication. In this paper, we propose multiple access scheme for a cognitive radio network, where multiple secondary users access spectrum of one primary user. We consider two types of multiple access scheme, one is p-persistent and one is non-persistent, and apply these two schemes in the secondary network. For each multiple access scheme, total throughput of secondary network is derived and verified by Monte Carlo simulation. Simulation results show that maximum total throughput of the secondary network is achieved when channel access probability or the number of maximum waiting frames is chosen appropriately.

A Real Time Sensing Through The Eigenvalue Detection in Cognitive Radio (Cognitive Radio 환경에서 고유치 값 검출을 통한실시간 센싱 방법)

  • Sohn, Sung-Hwan;Jang, Sung-Jeen;Kim, Jae-Moung
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.3
    • /
    • pp.1-7
    • /
    • 2010
  • Cognitive Radio, which adaptively utilizes the vacant licensed spectrum band, is considered as an effective way to alleviate the scarcity of spectrum resource shortage. In order to guarantee the non-interference transmission of primary system, spectrum sensing, especially in quiet period, is proposed. However, it is insufficient to avoid the unacceptable interference caused by Cognitive Radios, because the primary user may appear anytime that is unpredictable. In this paper, we address the deficiency of conventional spectrum sensing and propose a novel Cognitive Radio receiver structure with monitoring function block to detect the appearance of primary user in a real-time manner. Simulations prove that the proposed eigenvalue based detection method together with the two-threshold decision procedure performs properly.

The Coexistence Solution using Transmission Schedule and User's Position Information in Cognitive Radio Networks (전송 스케줄 및 사용자 위치 정보를 이용한 무선 인지 네트워크의 동일 주파수 대역 공존 방안)

  • Lee, Kyu-Ho;Choi, Jae-Kark;Yoo, Sang-Jo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.3B
    • /
    • pp.189-203
    • /
    • 2012
  • In cognitive radio networks, a secondary user opportunistically accesses an empty channel based on periodic sensing results for avoiding possible interference to the primary users. However, local sensing does not guarantee the full protection of the primary users because hidden primary receivers may exist within the interference range of the secondary transmitter. To protect primary systems and simultaneously to maximize utilization of the secondary users, we need to derive carefully designed coexistence solutions for various network scenarios. In this paper, we propose coexistence conditions without any harmful interference in accordance with the uplink/downlink schedule and user position. We have classified the coexistence conditions into four different scenario cases depending on the provided information to the secondary network basestations. Computer simulation results demonstrated that the proposed method can be applied to the real cognitive radio system to improve the communication probability of CR devices.

An Improved Combining of Hard Decisions for Cooperative Spectrum Sensing in Cognitive Radio Systems (무선인지 시스템에서 협력 스팩트럼 센싱 성능 향상을 위한 경판정 결합 기법)

  • Shin, Oh-Soon;Shin, Yo-An
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.2A
    • /
    • pp.132-138
    • /
    • 2009
  • Cognitive radio is considered as a promising solution to scarce spectrum problem. The primary object of cognitive radio is to increase spectral efficiency, while causing limited interference to primary users who are using the spectrum. Hence, an essential part of cognitive radio systems is spectrum sensing which determines whether a particular spectrum is occupied or not by a primary user at a particular time. However, sensing decision of each individual secondary user alone may not be reliable enough due to shadowing and multipath fading of wireless channels. The so called hidden terminal problem makes the problem even worse, possibly yielding undesired interference to the primary users. Recently, cooperative spectrum sensing is emerging as a remedy to these problems of individual sensing. Cooperative sensing allows a group of secondary users to share local sensing information to extract a global decision with high fidelity. In this paper, we investigate a cooperative spectrum sensing algorithm based on hard decisions of local sensing outcomes. Specifically, we propose an effective scheme for combining local decisions by introducing weighting factors that reflect reliability of the corresponding secondary user. Through computer simulations, the performance of the proposed combining scheme is compared with that of the conventional scheme without weighting factors in various environments.