• Title/Summary/Keyword: Primary Si

Search Result 523, Processing Time 0.036 seconds

Improvement of Wear Resistance and Formation of Si Alloyed Layer on Aluminum Alloy by PTA Process (PTA법에 의한 Al 합금표면의 Si 합금층 형성과 내마모성 개선)

  • ;;松田福久;中田一博
    • Journal of Welding and Joining
    • /
    • v.15 no.5
    • /
    • pp.134-143
    • /
    • 1997
  • The formation of thick alloyed layer with high Si content have been investigated on the surface of Al alloy (A5083) plate by PTA process with Si powder. Hardening characteristics and wear resistance of alloyed layer was examined in relation to the microstructure of alloyed layer. Thick hardened layer in mm-order thickness on the surface of A5083 plate can be formed by PTA process with wide range of process condition by using Si powder as alloying element because of eutectic reaction of Al-Si binary alloy. High temperature and rapid solidification rate of molten pool, which are features of PTA process, enable the formation of high Si content alloyed layer with uniform distribution of fine primary Si paticle. High plasma arc current was beneficial to make the alloyed layer with smooth surface appearance in wide range of powder feeding rate, because enough volume of molten pool was necessary make alloyed layer. Uniform dispersion of fine primary Si particle with about 30${\mu}{\textrm}{m}$ in particle size can be obtained in layer with Si content ranging from 30 to 50 mass %. Hardness of alloyed layer increased with increasing Si content, but increasing rate of hardness differed with macrostructure of alloyed layer. Wear resistance of alloyed layer depended on $V_{si}$(volume fraction of primary Si) and was remarkably improved to two times of base metal at 20-30% $V_{si}$ without cracking, but no more improvement was obtained at larger $V_{si}$.

  • PDF

Effect of the Casting Conditions on the Globulization of Primary Al of $AlSi_7Mg$ Alloy (($AlSi_7Mg$알루미늄 합금의 초정 구형화에 대한 주조조건의 영향)

  • Han, Yo-Sub;Lee, Ho-In;Lee, Jae-Chul
    • Journal of Korea Foundry Society
    • /
    • v.23 no.1
    • /
    • pp.40-46
    • /
    • 2003
  • Semisolid forming requires alloys with non-dendritic microstructure of the thixotropy. Recently, low pouring temperture method without stirring, i.e. liquidus casting has been found out new fabrication method of the semisolid metals. Effects of melt superheat and mold conditions on the globulization of primary Al of $AlSi_7Mg$ alloy were investigated in gravity casting process without stirring. The microstructures of primary Al as function of melt superheat and mold temperature show globular, rosette and dendritic shapes. The conditions for globular microstructure of primary Al were low melt superheat < 35 K and low mold temperature < 500 K. The thermal conditions for globular microstructure of primary Al were undercooled melt at early solidification stages and slow cooling < 0.6 K/s. It was found that the initial microstructure was maintained throughout the solidification and the globules of primary Al can be obtained by high nucleation of fine and spherical nuclei due to enhanced undercooling of melt.

Manufacturing Al-scrap into Hypereutectic Al-Si Alloy by Using Electromagnetic Force (전자기력을 이용한 Al scrap으로 부터 과공정 Al-Si합금의 제조)

  • Yoon, Ji-Hyun;Moon, Kwang-Ho;Kim, Yong-Hyun;Lee, Kwang-Hak
    • Journal of Korea Foundry Society
    • /
    • v.21 no.6
    • /
    • pp.328-335
    • /
    • 2001
  • The objective of this study is to investigate on manufacturing Al-scrap into hypereutectic Al-Si alloy by using electromagnetic force. The Fe element in the aluminium scrap was controlled by intermetallic compound method and using EMF(electromagnetic force). The most lumped compound was found after 10min holding at $690^{\circ}C$. A number of segregated compound was revealed when imposed to EMF at 30A. The refinement of primary Si particles was achieved by EMF stirring. Primary Si particles were refined and spheroidized most of all with the magnetic intensity of 180G for 10 min.

  • PDF

Study on Semi-Solid Processing of Al-Si Alloys by Rotation of Permanent Magnets (영구자석의 회전을 이용한 Al-Si합금계의 반응고합금 제조공정 연구)

  • Song, In-Hyuck;Hahn, Yoo-Dong;Yun, Jung-Yeul;Ahn, Jung-Ho
    • Journal of Korea Foundry Society
    • /
    • v.17 no.1
    • /
    • pp.67-75
    • /
    • 1997
  • The semisolid processing of two Al-Si alloys, A356 and Al-25wt%Si, was studied with using the rotor composed of permanent magnets. The semisolid slurry was agitated by the electromagnetic force induced from the rotating permant magnets. The round shaped primary ${\alpha}$ phases were formed in A356 alloy as a result of agitation. In Al25wt%Si alloy, spherodization of primary Si particles was not observed with the rotation of the magnets. The primary Si particles were segregated to the outer surface area of sample, which became pronounced with increasing the rotating speed of magnets.

  • PDF

Mechanical Properties of Hyper-Eutectic Aluminum Alloys for Automobile Parts (자동차 부품용 과공정 알루미늄 합금의 기계적 특성)

  • Bae, Chul-Hong;Kim, Jong-Myung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.1
    • /
    • pp.120-126
    • /
    • 2010
  • It was known that the excellent wear resistance of hyper eutectic aluminum alloy is based on the primary Si particles which are distributed in the base metal. When the primary Si volume fraction increases, the smaller size have excellent wear resistance characteristics. However, this trend always does not match. There is no investigation result based on the materials and methods for real using parts. In this study, using the automotive parts manufacturer currently in use hyper eutectic Al alloy tensile test specimen type sample was fabricated by 350Ton high pressure die-casting machine. Then, fluidity, tensile, impact and wear resistance properties were evaluated. If the casting quality, primary Si size, fraction and distribution are similar, mechanical properties and wear resistance are equivalent.

A study on the Horizontal Continuous Casting by Horizontal Continuous Casting Machine of Al-xSi(x=10-15%) Aluminum Alloy (수평식 연속주조 시스템을 이용한 Al-xSi(x=10-15%)합금 수평연주에 관한 연구)

  • Seo, Heesik;Ha, Sangbaek
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.17 no.3
    • /
    • pp.122-135
    • /
    • 2014
  • This paper was studied on the horizontal continuous casting of Al-xSi(x=10~15%) aluminum alloy. The experiments of the horizontal continuous casting was carried out by the horizontal continuous casting machine for various casting conditions and investigated on fracture types and mechanisms. Surface defect types for the horizontal continuous casting is also investigated. And the study was carried out that the horizontal continuous casting conditions such as casting temperature, cooling rate, and drawing speed affect the hardness and primary silicon size of Al-xSi(x=10~15%) aluminum rod bar. Casting temperature within this experiment conditions don't affect on the hardness of rod bar but the higher casting temperature is the smaller primary silicon size. The higher cooling rate and drawing speed have the higher hardness and the smaller primary silicon size.

Microstructure of Rheocompocast Al-Cu-Ti/SiCp composite (Rheocompocasting한 Al-Cu-Ti/SiCp 복합재료의 조직)

  • Yoon, Yeo-Chang;Choe, Jung-Chul;Hong, Sung-Kil
    • Journal of Korea Foundry Society
    • /
    • v.15 no.4
    • /
    • pp.368-376
    • /
    • 1995
  • An Al-composite material was fabricated with using the rheocompocasting process and the microstructure of the Al-Cu/SiCp composite material was investigated depending on the stirring times and the amount of Ti additions. The distribution of SiC dispersion shows the good result at the stirring time of 30 min. The degree of microdistribution of the $Al_2Cu$ and SiCp is improved when the amount of Ti addition is increased. At the compositon of 0.3%Ti, the primary solid is the compound of $Al_3Ti$ and no exist of the SiCp and $Al_2Cu$ phase around the primary $Al_3Ti$. In the process of compositization, SiCp is found at the primary and final solid parts and is found at the final solid part after remelting. $Al_2Cu$ and SiCp are distributed around and outside of dendrite or independently after remelting, which is different from the process of compositization.

  • PDF

Microstructural changes during semi-solid state processing of hypereutectic Al-Si alloys (고액공존 과공정 Al-Si합금의 교반응고시 미세조직변화)

  • Ryoo, Young-Ho;Kim, Do-Hyang
    • Journal of Korea Foundry Society
    • /
    • v.15 no.5
    • /
    • pp.483-493
    • /
    • 1995
  • The microstructural changes during semi-solid state processing of hypereutectic Al-Si alloy has been investigated in the present study. Stirring of semi-solid slurry results in the morphological changes of the primary Si particles, i.e. from angular rod shape to near-spherical shape. Besides the spherodization of primary Si particles, the average particle size increases, especially, at much higher rate in the final stage than that in the early stage of stirring. Various microstructure characterization techniques, such as anisotropic etching, SEM imaging and ECP analysis, reveal that the spherodization of primary Si particles occurs by the combinations of the mechanisms of coalescence, fracture, and wear of the individual particles. Isothermal shearing of hypereutectic Al-Si at $580^{\circ}C$ shows that spherical ${\alpha}-Al$ particles are formed by the dissociation of Al-Si eutectic structure at the early stage of isothermal shearing. The spherical ${\alpha}-Al$ particles gradually grow by the mechanisms of Ostwald ripening and coalescence of the particles.

  • PDF

Studies on Grain Size Refinement for Rheocasting of Hypereutectic Al-18% Si by Using Sieve Type Mechanical Stirrer (과공정 Al-18% Si 합금의 레올로지 성형시 기계적 교반을 이용한 입자 미세화 연구)

  • 강용기;박진욱;강성수;강충길;문영훈
    • Transactions of Materials Processing
    • /
    • v.9 no.4
    • /
    • pp.389-394
    • /
    • 2000
  • The studies on gram size refinement for rheocast processing of hypereutectic Al-18%Si alloys have been investigated in the present study. To increase the efficiency of mechanical stirring, sieve type stirrer are newly designed and implemented for rheocasting of hypereutectic Al-18%Si alloy. Mechanical stirring of semi-solid slurry by using sieve type mechanical stirrer results in morphological changes of the primary Si particles, from angular rod shape to near spherical shape and uniform distribution of proeutectic Si. The remarkable spheroidization of Primary Si Particles and distributional uniformity of proeutectic Si show well the efficiency of sieve type mechanical stirring method which can accelerate the coalescence-fracture-wear of the individual particles by strong turbulent flow between lattices during rotation of sieve type stirrer.

  • PDF

$\alpha$-halo formation in semi-solid state processed hypereutectic Al-Si alloy (반고상 가공과 공정 Al-Si 합금에서 $\alpha$-halo의 형성)

  • 김인준;김도향
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1997.06a
    • /
    • pp.183-195
    • /
    • 1997
  • The micorstructural characteristics, particularly $\alpha$-halo formation, in semi-solid state processed hypereutectic Al-Si alloy was investigated. The microstructural changes during reheating of wedge type mold cast ingot, hot-rolled sheet, and Si particulate reinforced Al composite was compared with those occurred during stirring of semi-solid state hypereutectic alloy. In the case of semi-solid state reheating of wedge type ingot and hot-rolled sheet, fine particles of Si as well as $\alpha$-halo formed after heat treatment. Although there seemed to be no coarsening with variations of holding time, the region of $\alpha$-halo decreased due to homogenization. Nucleation and recrystallization was accelerated with the addition of alloying elements during hot rolling resulting in primary Si particle size decrease and $\alpha$-halo formation. In the case of extruded specimens, very little morphological change of reinforcing Si particles was observed. Almost no $\alpha$-halo formed during reheating because of the oxide film formed on the reinforcing Si particles which acted as a diffusion barrier between the matrix and the primary Si particles.

  • PDF