• 제목/요약/키워드: Primary/ Secondary nozzle

검색결과 52건 처리시간 0.028초

The Effect of the Secondary Annular Stream on Supersonic Jet

  • Lee, Kwon-Hee;Toshiaki Setoguchi;Shigeru Matsuo;Kim, Hyeu-Dong
    • Journal of Mechanical Science and Technology
    • /
    • 제17권11호
    • /
    • pp.1793-1800
    • /
    • 2003
  • The present study addresses an experimental investigation of the near field flow structures of supersonic, dual, coaxial, free, jet, which is discharged from the coaxial annular nozzle. The secondary stream is made from the annular nozzle of a design Mach number of 1.0 and the primary inner stream from a convergent-divergent nozzle. The objective of the present study is to investigate the interactions between the secondary stream and inner supersonic jets. The resulting flow fields are quantified by pitot impact and static pressure measurements and are visualized by using a shadowgraph optical method. The pressure ratios of the primary jet are varied to obtain over-expanded flows and moderately under-expanded flows at the exit of the coaxial nozzle. The pressure ratio of the secondary annular stream is varied between 1.0 and 4.0. The results show that the secondary annular stream significantly changes the Mach disc diameter and location, and the impact pressure distributions. The effects of the secondary annular stream on the primary supersonic jet flow are strongly dependent on whether the primary jet is under-expanded or over-expanded at the exit of the coaxial nozzle.

다단 연소기를 이용한 LNG 화염의 NOx 발생에 관한 실험적 연구 (An Experimental Study on the NOx Formation of LNG Flame in Fuel Staged Combustor)

  • 정진도;한지웅;안국영
    • 대한기계학회논문집B
    • /
    • 제28권4호
    • /
    • pp.389-394
    • /
    • 2004
  • An experimental study on the NOx formation of LNG flame in fuel staged combustor has been studied. The design concept of multi fuel/air staged combustor is creation of two separate flame, a primary flame is a act as a pilot flame for the secondary combustion stage combustion zone, where most of fuel bums. Experiments were performed on a semi-industrial scale (thermal input 0.233 MW) in a laboratory furnace and Liquefied Natural Gas(LNG) was used as a primary and secondary fuels. This study included parametric study to identify the optimum operating conditions which are primary/secondary fuel ratio, and primary/secondary air ratio for reducing NOx emission with two types of nozzle. The test demonstrated that NOx emission can be reduced by >70% in accordance with operating conditions.

다단 연소기를 이용한 LNG 화염의 NOx 발생에 관한 실험적 연구 (An Experimental study on the NOx Formation of LNG Flame in Fuel Staged Combustor)

  • 한지웅;안국영;김한석;정진도;박경진
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집B
    • /
    • pp.161-166
    • /
    • 2001
  • An Experimental study on the NOx formation of LNG flame in fuel staged combustor has been studied. The design concept of multi fuel/air staged combustor is creation of two separate flame, a primary flame is act as a pilot flame for the secondary combustion stage combustion zone, where most of fuel burns. Experiments were performed on a semi-industrial scale (thermal input 0.233 MW) in a laboratory furnace and Liquefied Natural Gas(LNG) was used as primary and secondary fuels. The study included parametric study to identify the optimum operating conditions which are primary/secondary fuel ratio, and primary/secondary air ratio for reducing NOx emission with two types of nozzle. The test demonstrated that NOx emission can be reduced by >70% in accordance with operating conditions.

  • PDF

2차 가스분사에 의한 원추형 로켓노즐 추력벡터제어 성능해석 (I) (Performance Analysis of Secondary Gas Injection for a Conical Rocket Nozzle TVC(I))

  • 김형문;이상길;윤웅섭
    • 한국추진공학회지
    • /
    • 제3권1호
    • /
    • pp.1-8
    • /
    • 1999
  • 풍전압력비와 2차 제트 분사구 위치에 따른 2차분사 추력방향 제어(SITVC: secondary injection thrust vector control) 성능특성 변화를 수치해석하였다. 2차 제트 분사에 의해 간섭된 수축-팽창노즐 내부의 초음속유동장을 대상으로 3차원 비정상 오일러 방정식을 내재적으로 근사인자분해된 Beam과 Warming의 방법을 사용하여 차분하였으며, 2차 분사 제트에 의한 추력비 비추력비 및 전향각에 대한 성능변화를 고찰하였다. 연구결과 측추력과 비추력비는 2차 분사 질량유량에 비래하여 증가하는 반면, 비추력 성능은 감소되어 2차 분사 질량유량이 적을 수록 추력 성능손실이 적어지는 것으로 나타났다. 또한 동일한 전압력비에 대하여 2차 제트 분사위치가 노즐의 하류에 위치할수록 고속기 주유동과의 간섭에 의한 강한 충격파로 인하여 측추력과 측비추력의 증가와 함께 추력방향 제어성능이 향상됨을 알 수 있었다.

  • PDF

초음속 동축 스월제트의 유동특성에 대한 연구 (Study of Supersonic, Dual, Coaxial, Swirl Jet)

  • 김중배;이준희;이권희;김희동
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2003년도 제20회 춘계학술대회 논문집
    • /
    • pp.15-18
    • /
    • 2003
  • The present study addresses an experimental investigations of the near field flow structures of supersonic, dual, coaxial, swirl jet. The swirl stream is discharged from the secondary annular nozzle and the primary inner nozzle provides the sonic and supersonic free jets. The interactions between the secondary swirl and inner soni $c^ersonic jets are quantified by a fine pilot impact and static pressure measurements and are visualized by using a shadowgraph optical method. The pressure ratios of the secondary swirl and primary soni $c^ersonic jets are varied below 7.0. Experiments are conducted to investigate the effects of the secondary swirl stream on the primary sonic and supersonic jets, compared with the secondary stream of no swirl. The results show that the presence of annular swirl stream causes the Mach disk to move more downstream, with the increased diameter, and remarkably reduces the fluctuations of the impact pressures in the supersonic dual coaxial jet, compared with the case of the secondary annular stream of no swirl.swirl.

  • PDF

2차 분사의 위치 변화에 따른 로켓노즐 출구에서의 추력 분포 변화 (The Variation of Thrust Distribution of the Rocket Nozzle Exit Plane with the Various Position of Secondary Injection)

  • 김성준;이진영;박명호
    • 산업기술연구
    • /
    • 제20권B호
    • /
    • pp.45-53
    • /
    • 2000
  • A numerical study is done on the thrust vector control using gaseous secondary injection in the rocket nozzle. A commercial code, PHOENICS, is used to simulate the rocket nozzle flow. A $45^{\circ}-15^{\circ}$ conical nozzle is adopted to do numerical experiments. The flow in a rocket nozzle is assumed a steady, compressible, viscous flow. The exhaust gas of the rocket motor is used as an injectant to control the thrust vector of rocket at the constant rate of secondary injection flow. The injection location which is on the wall of rocket is chosen as a primary numerical variable. Computational results say that if the injection position is too close to nozzle throat, the reflected shock occurs. On the other hand, the more mass flow rate of injection is needed to get enough side thrust when the injection position is moved too far from the throat.

  • PDF

추력벡터제어를 위한 이차 분사유동이 있는 2DCD 노즐 내부의 수치적 연구 (Numerical Investigation of 2DCD Nozzle Flow Having a Secondary Jet Injection for Thrust Vector Control)

  • 이진규;장근식
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2002년도 추계 학술대회논문집
    • /
    • pp.17-22
    • /
    • 2002
  • A numerical solution procedure has been developed to analyze the flow field resulted from the injection of a transverse jet through the divergent flap of a 2DCD nozzle for thrust vector control. The formulation employs the compressible Navier-Stokes equations in conservation law form and a two equation $\kappa-\omega$ turbulence model. Detailed numerical results are presented in this paper for the 2DCD nozzle over a range of secondary to primary injection mass flow ratios and nozzle pressure ratios.

  • PDF

환형 유동을 수반하는 초음속 스월 제트 유동의 가시화 (Visualization of the Supersonic Swirl Jet with Annular Stream)

  • 김중배;이권희;;김희동
    • 한국가시화정보학회:학술대회논문집
    • /
    • 한국가시화정보학회 2003년도 추계학술대회 논문집
    • /
    • pp.91-94
    • /
    • 2003
  • The present study addresses experimental results to investigate the details of the near field flow structures produced in the under-expanded, dual, coaxial, swirling, jet. The sonic swilling jets are emitted from a sonic inner nozzle and the outer annular nozzle produces the co/counter swirling streams against the primary swirling jet, respectively. The interactions between both the secondary annular swirling and primary inner supersonic swirling jets are quantified by the pilot impact and static pressure measurements, and visualized by using the Schlieren optical method. The experiment has been performed fur different swirl intensities and pressure ratios. The results obtained show that the secondary co-swirling jet significantly changes the inner under-expanded swirling jet, such as the recirculation zone, pressure distribution, through strong interactions between both the swirling jets, and the effect of the secondary counter-swirling jet on the primary inner jet is similar to the secondary co-swirl jet case.

  • PDF

A Study of the Transient Flow Characteristics of a Vacuum Ejector-Diffuser System.

  • ;김희동
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.2769-2774
    • /
    • 2007
  • In vacuum ejector-diffuser systems where a finite volume secondary chamber is used, the secondary jet exhibits transient characteristics during start-up. A steady state is achieved after some time in which mass entrainment prevails indefinitely inside the ejector, though there is no flow from the secondary chamber. An attempt is made in this work to study the infinite entrainment of secondary jet into the primary jet from a finite secondary chamber, with the help of a computational fluid dynamics method. The present study is also intended to identify the operating range of vacuum ejector-diffuser systems where the steady flow assumption can be applied without uncertainty. The results obtained show that the only condition in which an infinite mass entrainment is possible is the generation of a re-circulation zone near the primary nozzle exit. The flow in the secondary chamber attains a state of dynamic equilibrium at this point. Steady flow assumption is valid only after this point.

  • PDF

The Starting Characteristics of the Steady Ejector-Diffuser System

  • Gopalapillai, Rajesh;Kim, Heuy-Dong;Matsuo, Shigeru;Setoguchi, Toshiaki
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2008년 영문 학술대회
    • /
    • pp.680-685
    • /
    • 2008
  • The ejector is a simple device which can transport a low-pressure secondary flow by using a high-pressure primary flow. In general, it consists of a primary driving nozzle, a mixing section, and a diffuser. The ejector system entrains the secondary flow through a shear action generated by the primary jet. Until now, a large number of researches have been made to design and evaluate the ejector systems, where it is assumed that the ejector system has an infinite secondary chamber which can supply mass infinitely. However, in almost all of the practical applications, the ejector system has a finite secondary chamber implying steady flow can be possible only after the flow inside ejector has reached an equilibrium state after the starting process. To the authors' best knowledge, there are no reports on the starting characteristics of the ejector systems and none of the works to date discloses the detailed flow process until the secondary chamber flow reaches an equilibrium state. The objective of the present study is to investigate the starting process of an ejector-diffuser system. The present study is also planned to identify the operating range of ejector-diffuser systems where the steady flow assumption can be applied without uncertainty. The results obtained show that the one and only condition in which an infinite mass entrainment is possible is the generation of a recirculation zone near the primary nozzle exit. The flow in the secondary chamber attains a state of dynamic equilibrium at this point.

  • PDF