• Title/Summary/Keyword: Pretreatment with probiotics

Search Result 5, Processing Time 0.023 seconds

Effect of Pretreatment with Lactobacillus delbrueckii and Streptococcus thermophillus on Tailored Triple Therapy for Helicobacter pylori Eradication: A Prospective Randomized Controlled Clinical Trial

  • Tongtawee, Taweesak;Dechsukhum, Chavaboon;Leeanansaksiri, Wilairat;Kaewpitoon, Soraya;Kaewpitoon, Natthawut;Loyd, Ryan A;Matrakool, Likit;Panpimanmas, Sukij
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.12
    • /
    • pp.4885-4890
    • /
    • 2015
  • Background: Helicobacter pylori plays an important role in gastric cancer and typical eradication regimens are no longer effective in many countries, including Thailand. The aim of our study was to compare the effect of Lactobacillus delbrueckii and Streptococcus thermophillus on tailored triple therapy for Helicobacter pylori eradication. Materials and Methods: This prospective single-center study was conducted in Thailand. Helicobacter pylori associated gastritis patients were randomized to 2 groups: group 1 (n=100) was tailored triple therapy with placebo (esomeprazole 20 mg bid, clarithromycin 500 mg bid or metronidazole 400 mg tid if clarithromycin resistance and amoxicillin 1000 mg bid), and group 2 was tailored triple therapy plus pretreatment with probiotic containing yogurt. Successful eradication was defined as both negative histology and negative rapid urease test at four weeks after treatment. Results: A total of 200 infected patients were enrolled. PP analysis involved 194 patients: 96 in the tailored triple therapy with placebo group (group 1) and 98 the in tailored triple therapy plus pretreatment with probiotic containing yogurt group (group 2). Successful eradication was observed in 170 (87.6%) patients; by PP analysis, the eradication rate was significantly higher in group 2 (P = 0.04, 95%CI; 0.02-0.13) than in group 1. ITT analysis also showed that the value was significantly higher in the tailored triple threapy plus pretreatment with probiotic containing yogurt group (group 2) (89/100; 89%) than in the tailored triple therapy with placebo group (group 1) (P= 0.01, 95%CI; 0.04-0.15). In terms of adverse events, there was no significant difference between the two groups. Conclusions: Pretreatment with probiotic containing yogurt can improve Helicobacter pylori eradication rates with tailored triple therapy. Adding probiotics does not reduce adverse effects of the medication.

Lactobacillus brevis KB290 Enhances IL-8 Secretion by Vibrio parahaemolyticus-Infected Caco-2 Cells

  • Yakabe, Takafumi;Shimohata, Takaaki;Takahashi, Akira
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.1
    • /
    • pp.118-124
    • /
    • 2013
  • Vibrio parahaemolyticus in uncooked seafood causes acute gastroenteritis. The microorganism has two sets of type III secretion systems and two hemolysins. When it injects its effector proteins into a host cell via type III secretion system 1, one of the type III secretion systems induces secretion of interleukin (IL)-8, a proinflammatory chemokine, through the phosphorylation of ERK 1/2 and p38 MAPK. Although probiotics have beneficial effects on hosts and can help control some infectious diseases, there is little research on the efficacy of probiotics in V. parahaemolyticus infection. Here we pretreated V. parahaemolyticus-infected human intestinal epithelial cells with heat-killed Lactobacillus brevis KB290, a probiotic isolated from fermented vegetables (traditional Japanese pickles) and utilized as an ingredient of beverages and supplementary foods, and demonstrated its efficacy in enhancing IL-8 secretion from V. parahaemolyticus-infected cells. Among the three heat-killed lactic acid bacterial strains we tested, L. brevis KB290 induced the highest level of IL-8 secretions in the infected cells. Relative to control cells (Caco-2 cells pretreated with PBS), V. parahaemolyticus-infected Caco-2 cells pretreated with heat-killed L. brevis KB290 secreted IL-8 earlier, although concentrations were similar 450min after infection. Heat-killed L. brevis KB290 pretreatment also induced earlier ERK 1/2 phosphorylation, greater p38 MAPK phosphorylation, and enhanced IL-8 mRNA expression. Heat-killed L. brevis KB290 accelerated IL-8 secretion, a host cell immune response, in V. parahaemolyticus-infected cells. We consider this to be beneficial because IL-8 plays an important defensive role against infection, and would contribute to the repair of injured epithelial cells.

Neuroprotective Effects of Heat-Killed Levilactobacillus brevis KU15152 on H2O2-Induced Oxidative Stress

  • Hyun-Ji Bock;Na-Kyoung Lee;Hyun-Dong Paik
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.9
    • /
    • pp.1189-1196
    • /
    • 2023
  • This study proposed to demonstrate the neuroprotective effects of heat-killed Levilactobacillus brevis KU15152. Heat-killed L. brevis KU15152 showed antioxidant activity similar to that of Lacticaseibacillus rhamnosus GG, in terms of radical scavenging activity. To evaluate the neuroprotective effects, conditioned medium (CM) obtained by incubating heat-killed bacteria in intestinal cells (HT-29) was used through gut-brain axis. CM from L. brevis KU15152 protected neuroblastoma cells (SH-SY5Y) against H2O2-induced oxidative stress. Pretreatment with CM significantly alleviated the morphological changes induced by H2O2. Heat-killed L. brevis KU15152 showed an increased brain-derived neurotrophic factor (BDNF) expression in HT-29 cells. L. brevis KU15152-CM remarkably downregulated the Bax/Bcl-2 ratio, while upregulating the expression of BDNF and tyrosine hydroxylase (TH) in SH-SY5Y cells. Furthermore, L. brevis KU15152-CM reduced caspase-3 activity following H2O2 treatment. In conclusion, L. brevis KU15152 can be potentially used as food materials to avoid neurodegenerative diseases.

Ginsenoside Rb1 exerts neuroprotective effects through regulation of Lactobacillus helveticus abundance and GABAA receptor expression

  • Chen, Huimin;Shen, Jiajia;Li, Haofeng;Zheng, Xiao;Kang, Dian;Xu, Yangfan;Chen, Chong;Guo, Huimin;Xie, Lin;Wang, Guangji;Liang, Yan
    • Journal of Ginseng Research
    • /
    • v.44 no.1
    • /
    • pp.86-95
    • /
    • 2020
  • Background: Ginsenoside Rb1 (Rb1), one of the most abundant protopanaxadiol-type ginsenosides, exerts excellent neuroprotective effects even though it has low intracephalic exposure. Purpose: The present study aimed to elucidate the apparent contradiction between the pharmacokinetics and pharmacodynamics of Rb1 by studying the mechanisms underlying neuroprotective effects of Rb1 based on regulation of microflora. Methods: A pseudo germ-free (PGF) rat model was established, and neuroprotective effects of Rb1 were compared between conventional and PGF rats. The relative abundances of common probiotics were quantified to reveal the authentic probiotics that dominate in the neuroprotection of Rb1. The expressions of the gamma-aminobutyric acid (GABA) receptors, including GABAA receptors (α2, β2, and γ2) and GABAB receptors (1b and 2), in the normal, ischemia/reperfusion (I/R), and I/R+Rb1 rat hippocampus and striatum were assessed to reveal the neuroprotective mechanism of Rb1. Results: The results showed that microbiota plays a key role in neuroprotection of Rb1. The relative abundance of Lactobacillus helveticus (Lac.H) increased 15.26 fold after pretreatment with Rb1. I/R surgery induced effects on infarct size, neurological deficit score, and proinflammatory cytokines (IL-1β, IL-6, and TNF-α) were prevented by colonizing the rat gastrointestinal tract with Lac.H (1 × 109 CFU) by gavage 15 d before I/R surgery. Both Rb1 and Lac.H upregulated expression of GABA receptors in I/R rats. Coadministration of a GABAA receptor antagonist significantly attenuated neuroprotective effects of Rb1 and Lac.H. Conclusion: In sum, Rb1 exerts neuroprotective effects by regulating Lac.H and GABA receptors rather than through direct distribution to the target sites.

The Probiotic Effects of the Saccharomyces cerevisiae 28-7 Strain Isolated from Nuruk in a DSS-Induced Colitis Mouse Model

  • Lee, Jang Eun;Lee, Eunjung
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.7
    • /
    • pp.877-884
    • /
    • 2022
  • Probiotics are microorganisms that can benefit host health when ingested in a live state, and lactic acid bacteria are the most common type. Among fungi, Saccharomyces boulardii (SB) is the only strain known to have a probiotic function with beneficial effects on colitis; however, information on other probiotic yeast strains is limited. Therefore, this study aimed to discover yeast strains expressing intestinal anti-inflammatory activities by exhibiting probiotic properties in dextran sodium sulfate (DSS)-induced colitis mice model. Nuruk (Korean traditional fermentation starter) containing various microbial strains was used as a source for yeast strains, and S. cerevisiae 28-7 (SC28-7) strain was selected with in vitro and in vivo characteristics to enable survival in the intestines. After 14 days of pretreatment with the yeast strains, DSS was co-administered for six days to induce colitis in mice. The results revealed that the disease activity index score was lowered by SC28-7 treatment compared to the DSS group, and the colon length and weight/length ratio were recovered in a pattern similar to that of the normal group. SC28-7 administration significantly reduced the secretion of pro-inflammatory cytokines in the serum and modified the mRNA expression of inflammatory cytokines (interleukin-1β, transforming growth factor-β, and interferon-γ) and proteins involved in gut barrier functions (mucin 2, mucin 3, zonula occludens-1, and occludin) in colon tissues. These results indicate that SC28-7 attenuates DSS-induced colon damage and inflammation, supporting its future use as a probiotic yeast for treating and preventing intestinal inflammatory diseases such as inflammatory bowel disease.