• Title/Summary/Keyword: Prestress-Loss

Search Result 56, Processing Time 0.204 seconds

Development of Embedded Type Sensor Module for Measuring Stress of Concrete Using Hetero-core Optical Fiber (헤테로코어 광섬유를 이용한 콘크리트 응력 측정용 매립형 센서모듈의 개발)

  • Yang, Hee-Won;Lee, Hwan-Woo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.2
    • /
    • pp.68-75
    • /
    • 2022
  • In this study, in order to directly evaluate the prestress of the PSC structure, a new sensor module based on the measurement of the deformation of concrete was proposed using hetero-core optical fibers and performance tests were performed. In a hetero-core optical fiber, optical loss occurs when a specific part of the transmission path is bent, and the amount of optical loss changes linearly according to the magnitude of the curvature. In order to confirm the measurement performance of the sensor module and the applicability of the optical fiber, the sensor module was deformed and the light passing through the optical fiber was converted into wattage and measured. It can be seen that the light passing through the optical fiber has a linearity of 0.9333 in relation to the deformation while generating the maximum deformation of 0.5 mm at a rate of 0.12 mm/min in a cylindrical concrete specimen with a diameter of 15 cm and a height of 35 cm in which the sensor module is embedded. Based on the results of this experiment, it is judged that it is possible to directly evaluate the prestress of a PSC structure by embedding a sensor module using a hetero-core optical fiber in the structure and measuring the compression deformation in concrete. It is judged that it can be used as useful data for the development of a sheath tube integrated sensor module to be applied to be applied to the girder model experiment.

Long-Term Behavior of CFRP Strips under Sustained Loads (지속하중을 받는 탄소섬유판의 장기 거동)

  • You, Young-Chan;Choi, Ki-Sun;Kim, Keung-Hwan
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.2
    • /
    • pp.139-146
    • /
    • 2009
  • Experimental study was performed to evaluate the long-term behavior of CFRP (carbon fiber reinforced polymer) strips under sustained loads including prestressing force in strengthening RC members with post-tensioned CFRP strips. Two types of CFRP strip such as unidirectional CFRP strip and hybrid CFRP strip which is composed of carbon fiber and steel plate were considered. Also two types of loading scheme were included in this study. Direct sustained loading test had been carried out to estimate the creep deformation and relaxation of CFRP strips including slip deformation at both mechanical anchorages for over 700 days. Also, flexural sustained loading test had been conducted to estimate the initial prestress losses on clamping the CFRP strips at jacking anchorages for over 90 days. From the sustained loading tests, it was observed that stress losses of unidirectional CFRP strips due to the creep deformation and relaxation of material itself and slip deformation at mechanical anchorage were ignorable. On the other hand, significant stress losses caused by the yielding of steel embedded in CFRP strips were found in case of hybrid CFRP strips due to the initial jacking force over steel yielding stress. Also, initial prestress losses during setting of CFRP strips on mechanical anchorage were about 10% of intial jacking force, which must be considered in the design.

Identifying the Significance of Factors Affecting Creep of Concrete: A Probabilistic Analysis of RILEM Database

  • Adam, Ihab;Taha, Mahmoud M. Reda
    • International Journal of Concrete Structures and Materials
    • /
    • v.5 no.2
    • /
    • pp.97-111
    • /
    • 2011
  • Modeling creep of concrete has been one of the most challenging problems in concrete. Over the years, research has proven the significance of creep and its ability to influence structural behavior through loss of prestress, violation of serviceability limit states or stress redistribution. Because of this, interest in modeling and simulation of creep has grown significantly. A research program was planned to investigate the significance of different factors affecting creep of concrete. This research investigation is divided into two folds: first, an in-depth study of the RILEM creep database and development of a homogenous database that can be used for blind computational analysis. Second: developing a probabilistic Bayesian screening method that enables identifying the significance of the different factors affecting creep of concrete. The probabilistic analysis revealed a group of interacting parameters that seem to significantly influence creep of concrete.

A Study on Pretension Girder Method using Precast Concrete bed System (프리캐스트 콘크리트 제작대를 이용한 프리텐션 거더 제작 공법)

  • Ma, Hyang-Wook;Oh, Hyun-Chul;Kim, In-Gyu;Kim, Young-Jin;Kim, Keun-Taek
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.463-464
    • /
    • 2010
  • Pre-tension Girder using Precast Concrete bed System have advantage of simplifying construction process, reducing prestress-loss and cost compared with post-tension Girder. That is because it is possible to produce pre-tension Girder by prefabricated concrete bed in site not factory. This paper present pre-tension girder method using precast concrete bed system and field application.

  • PDF

Hybrid Damage Detection in Prestressed Concrete Girder Bridges (프리스트레스트 콘크리트 거더교의 하이브리드 손상 검색)

  • Hong, Dong-Soo;Lee, Jung-Mi;Na, Won-Bae;Kim, Jeong-Tae
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.669-674
    • /
    • 2007
  • To develop a promising hybrid structural health monitoring (SHM) system, a combined use of structural vibration and electro-mechanical (EM) impedance is proposed. The hybrid SHM system is designed to use vibration characteristics as global index and EM impedance as local index. The proposed health monitoring scheme is implemented into prestressed concrete (PSC) girder bridges for which a series of damage scenarios are designed to simulate various prestress-loss situations at which the target bridges car experience during their service life. The measured experimental results, modal parameters and electro-magnetic impedance signatures, are carefully analyzed to recognize the occurrence of damage and furthermore to indicate its location.

  • PDF

Development of Acceleration-PZT Impedance Hybrid Sensor Nodes Embedding Damage Identification Algorithm for PSC Girders

  • Park, Jae-Hyung;Lee, So-Young;Kim, Jeong-Tae
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.3
    • /
    • pp.1-10
    • /
    • 2010
  • In this study, hybrid smart sensor nodes were developed for the autonomous structural health monitoring of prestressed concrete (PSC) girders. In order to achieve the objective, the following approaches were implemented. First, we show how two types of smart sensor nodes for the hybrid health monitoring were developed. One was an acceleration-based smart sensor node using an MEMS accelerometer to monitor the overall damage in concrete girders. The other was an impedance-based smart sensor node for monitoring the local damage in prestressing tendons. Second, a hybrid monitoring algorithm using these smart sensor nodes is proposed for the autonomous structural health monitoring of PSC girders. Finally, we show how the performance of the developed system was evaluated using a lab-scaled PSC girder model for which dynamic tests were performed on a series of prestress-loss cases and girder damage cases.

Experimental Evaluation for Ultimate Flexural Behaviors of PSC beams with A Corroded Tendon (PS강연선이 부식된 PSC보의 극한휨거동 평가실험)

  • Youn, Seok-Goo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.3
    • /
    • pp.843-854
    • /
    • 2013
  • This paper presents experimental research work for the evaluation of ultimate flexural behaviors of prestressed concrete beams with a corroded tendon. In order to evaluate the effects of loss of prestress or loss of tendon area on the ultimate flexural strength of prestressed concrete beams, static load tests are conducted using five prestressed concrete beams. After exposing prestressing tendons in two test beams using 25mm drill bit, the exposed tendons were corroded using an accelerating corrosion equipment to simulate loss of tendon area. During the tests, steel strains, concrete strains and displacements at the center of test beams were measured, and acoustic emission measurements were conducted to detect wire fractures. Based on the test results, evaluation method for predicting flexural strength of prestressed concrete beams with corroded tendons is investigated. In addition, evaluation methods for predicting the existence of corroded tendons in post-tensioned prestressed concrete beams at service loads are discussed.

Evaluation of Prestress Loss in Prestressing Reinforcing Units using Steel Bar and Pipe (강봉 및 강관을 이용한 프리스트레싱 유닛의 긴장 응력 손실 평가)

  • Sim, Jae-Il;Mun, Ju-Hyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.4
    • /
    • pp.75-82
    • /
    • 2021
  • The objective of this study is to examine the loss of prestressing stress in the developed prestressing reinforcing units using steel bar and pipe (SP). The main parameters were the reinforcing bar type, the magnitude of prestressed force, and prestressing method. The test results showed that the loss of prestressing stress for SP was highest in the initial prestressing step, which was higher for the compression introduction typed specimens than tension introduction typed specimens. The loss of prestressing stress of SP made with P800 was 1.6% for the compression introduction typed specimen with 0.8fy, which was lowest than the other specimens. Meanwhile, the relaxation of SP with the respect to the time ranged between 0.4 and 1.9%, irrespective of SP material type, the magnitude of prestressed force, and prestressing method. These values were less than 2.5%, which is the maximum value for the relaxation of prestressed reinforcing steel bars in design codes. Consequently, considering the loss of stress developed in the initial prestressing step, the developed SP material type, prestressing introduction method, and magnitude are recommended to be P800, compression introduction type, and 0.8fy.

Time-dependent properties of lightweight concrete using sedimentary lightweight aggregate and its application in prestressed concrete beams

  • Chen, How-Ji;Tsai, Wen-Po;Tang, Chao-Wei;Liu, Te-Hung
    • Structural Engineering and Mechanics
    • /
    • v.39 no.6
    • /
    • pp.833-847
    • /
    • 2011
  • We have developed a lightweight aggregate (LWA) concrete made by expanding fine sediments dredged from the Shihmen Reservoir (Taiwan) with high heat. In this study, the performance of the concrete and of prestressed concrete beams made of the sedimentary LWA were tested and compared with those made of normal-weight concrete (NC). The test results show that the lightweight concrete (LWAC) exhibited comparable time-dependent properties (i.e., compressive strength, elastic modulus, drying shrinkage, and creep) as compared with the NC samples. In addition, the LWAC beams exhibited a smaller percentage of prestress loss compared with the NC beams. Moreover, on average, the LWAC beams could resist loading up to 96% of that of the NC beams, and the experimental strengths were greater than the nominal strengths calculated by the ACI Code method. This investigation thus established that sedimentary LWA can be recommended for structural concrete applications.

A new equivalent friction element for analysis of cable supported structures

  • Yan, Renzhang;Chen, Zhihua;Wang, Xiaodun;Liu, Hongbo;Xiao, Xiao
    • Steel and Composite Structures
    • /
    • v.18 no.4
    • /
    • pp.947-970
    • /
    • 2015
  • An equivalent friction element is proposed to simulate the friction in cable-strut joints. Equivalent stiffness matrixes and load vectors of the friction element are derived and are unified into patterns for FEM by defining a virtual node specially to store internal forces. Three approaches are described to verify the rationality of the new equivalent friction element: applying the new element in a cable-roller model, and numerical solutions match well with experimental results; applying the element in a continuous sliding cable model, and theoretical values, numerical and experimental results are compared; and the last is applying it in truss string structures, whose results indicate that there would be a great error if the cable of cable supported structures is simulated with discontinuous cable model which is usually adopted in traditional finite element analysis, and that the prestress loss resulted from the friction in cable-strut joints would have adverse effect on the mechanical performance of cable supported structures.