• Title/Summary/Keyword: Pressurizing Tank

Search Result 22, Processing Time 0.042 seconds

An Analysis of the Water Supply System with Pressurizing Tank (가압탱크를 이용한 급수시스템의 해석 및 최적화 연구)

  • Lee, T.W.;Kim, T.H.;Choi, D.H.;Kim, S.D.;Kim, J.P.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.6 no.2
    • /
    • pp.93-102
    • /
    • 1994
  • It is the goal of this study to provide the essential data for design and operation of optimum water supply system. Experimental and theoretical analyses have been conducted for various parameters, for example, volume and air percent of pressurizing tank, pump speed and pressure range inside tank, etc. Pressure inside tank with time, flow rate, energy consumption rate and pump operation time have been obtained for design and operating parameters to optimize the components and to establish the operating method of system, and therefore to contribute to the development of technology from a point of view of the improvement of quality, the enhancement of system efficiency and the reduction of construction cost.

  • PDF

Flow Visualization and Calculation at the Outlet of Propellant Tank Pressurizing Gas Injector (추진제탱크 가압용 인젝터 출구에서의 유동가시화 및 해석)

  • Kwon, Oh-Sung;Han, Sang-Yeop;Kwon, Ki-Jung;Chung, Yong-Cahp
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.1
    • /
    • pp.73-79
    • /
    • 2010
  • Propellant tank pressurizing gas injector is used in the pressurization system of liquid propellant rocket to reduce incoming gas velocity and distribute the gas in the tank. Temperature distribution in the propellant tank ullage is varied according to the gas injector shape, and it has influence on the required pressurant gas and thermal phenomena in the tank. In this paper, diffuser type gas injector was studied to make the ullage have stratified temperature distribution. Injected gas flow at the outlet of prototype diffuser was visulized using particle image velocimetry method and it was compared with the results of calculation. Calculation was well agreed with measurement and was used as an inlet condition of propellant tank ullage calculation.

Internal Strain Monitoring of Filament Wound Pressure Tanks using Embedded Fiber Bragg Grating Sensors (삽입된 광섬유 브래그 격자 센서를 이용한 필라멘트 와인딩된 복합재료 압력탱크의 내부 변형률 모니터링)

  • Kim, C.U.;Park, S.W.;Park, S.O.;Kim, C.G.;Kang, D.H.
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.04a
    • /
    • pp.17-20
    • /
    • 2005
  • In-situ structural health monitoring of filament wound pressure tanks were conducted during water-pressurizing test using embedded fiber Bragg grating (FBG) sensors. We need to monitor inner strains during working in order to verify the health condition of pressure tanks more accurately because finite element analyses on filament wound pressure tanks usually show large differences between inner and outer strains. Fiber optic sensors, especially FBG sensors can be easily embedded into the composite structures contrary to conventional electric strain gages (ESGs). In addition, many FBG sensors can be multiplexed in single optical fiber using wavelength division multiplexing (WDM) techniques. We fabricated a standard testing and evaluation bottle (STEB) with embedded FBG sensors and performed a water-pressurizing test. In order to increase the survivability of embedded FBG sensors, we suggested a revised fabrication process for embedding FBG sensors into a filament wound pressure tank, which includes a new protecting technique of sensor heads, the grating parts. From the experimental results, it was demonstrated that FBG sensors can be successfully adapted to filament wound pressure tanks for their structural health monitoring by embedding.

  • PDF

Heating Apparatus Development for Cryogenic Gaseous Helium (극저온 헬륨가스 가열장치 개발)

  • Chung, Yong-Gahp;Kwon, Oh-Sung;Cho, Nam-Kyung;Cho, In-Hyun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.363-367
    • /
    • 2009
  • For the liquid rocket propulsion system using liquid oxygen as oxidizer, helium for pressurizing LOX is usually stored in the LOX tank with cryogenic temperature. For that kind of pressurizing system, cryogenic helium is discharged from the immerged pressurant cylinder and passes through the heat exchanger downstream of gas generator. During the process, helium pressurant is heated from cryogenic temperature to high one and supplied to the ullage of propellant tank. To develop the pressurizing system, a cryogenic heating apparatus is needed to simulate the heat exchanger. In this paper, the cryogenic heating apparatus for development of the pressurization system is presented along with its heating test results with cryogenic helium.

  • PDF

Heating Apparatus Development and Tests for Cryogenic Gaseous Helium (극저온 헬륨가스 가열장치 개발 및 시험)

  • Chung, Yong-Gahp;Cho, Nam-Kyung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.1
    • /
    • pp.63-68
    • /
    • 2011
  • For the liquid rocket propulsion system using liquid oxygen as oxidizer, helium for pressurizing LOX is usually stored in the LOX tank with cryogenic temperature. For that kind of pressurizing system, cryogenic helium is discharged from the immerged pressurant cylinder and passes through the heat exchanger downstream of gas generator. During the process, helium pressurant is heated from cryogenic temperature to high one and supplied to the ullage of propellant tank. To develop the pressurizing system, a cryogenic heating apparatus is needed to simulate the heat exchanger. In this paper, the cryogenic heating apparatus for development of the pressurization system is presented along with its heating test results with cryogenic helium.

Development of Cryogenic Pump Test Facility (극저온 펌프 성능시험설비의 개발)

  • Kang, Jeong-Seek;Kim, Jin-Sun;Kim, Jin-Han
    • The KSFM Journal of Fluid Machinery
    • /
    • v.7 no.4 s.25
    • /
    • pp.47-52
    • /
    • 2004
  • Cryogenic pump test facility (CPTF) is designed and developed in KARI. Hydraulic and cavitation performance of pump and inducer in cryogenic environment can be measured. Working fluid is liquid nitrogen and operating temperature is $-197^{\circ}C$. Run tank, catch tank of liquid nitrogen and their pressurizing tank has been built and remote tank pressure control system are installed. Maximum power of driving motor is 320 kW and its maximum speed is 32000rpm. Cryogenic fluids and lubricating systems are effectively separated that long test times are acquired. Therefore hydraulic and cavitation performance can be measured accurately and effectively. Pre-cooling test of the facility was successfully accomplished. This facility will contribute greatly to the development of turbopump for KSLV.

Development of Cryogenic Turbopump Test Facility (극저온 터보펌프 성능시험설비의 개발)

  • Kang, Jeong-Seek;Kim, Jin-Sun;Kim, Jin-Han
    • 유체기계공업학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.340-345
    • /
    • 2003
  • Cryogenic turbopump test facility(CTTF) is designed and developed. Hydraulic and cavitation performance of turbopump in cryogenic environment can be measured. Working fluid is liquid nitrogen and operating temperature is $-197^{\circ}C$. Liquid nitrogen run tank, catch tank and pressurizing tank has been built and remote tank pressure control system are installed. Maximum power of turbopump is 320kW and its maximum speed is 32000rpm. Cryogenic fluids and lubricating systems are effectively separated that long test times are acquired. Therefore hydraulic and cavitation performance can be measured accurately and effectively. This facility will contribute greatly to the development of turbopump for KSLV.

  • PDF

Basic Model for Propellant Tank Ullage Calculation (추진제탱크 얼리지 해석을 위한 기본모델)

  • Kwon, Oh-Sung;Cho, Nam-Kyung;Cho, In-Hyun
    • Aerospace Engineering and Technology
    • /
    • v.9 no.1
    • /
    • pp.125-132
    • /
    • 2010
  • Estimation of pressurant mass flowrate and its total mass required to maintain propellant tank pressure during propellant outflow is very important for design of pressurization control system and pressurant storage tank. Especially, more pressurant mass is required to maintain pressure in cryogenic propellant tank, because of reduced specific volume of pressurant due to heat transfer between pressurant and tank wall. So, basic model for propellant tank ullage calculation was proposed to estimate ullage and tank wall temperature distribution, required pressurant mass, and energy distribution of pressurant in ullage. Both test and theoretical analysis have been conducted, but only theoretical modeling method was addressed in this paper.

Strain monitoring of the composite high pressure tanks using the FBG sensors (광섬유 센서를 이용한 복합재료 고압탱크 변형률 측정)

  • 박재성;윤종훈;공철원;장영순;이원복;노태호
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.10a
    • /
    • pp.141-145
    • /
    • 2003
  • The FBG sensors are inserted on the liners of the filament wound pressure tanks. The strains near the welding region of the liners are monitored in the hydro-pressurizing tests. The hydro-pressurizing tests consist of the proof tests at 4500 or 3300 psi and repeated test at the operating pressure, 3000 psi. The FBG sensors work well under $3000\mu\varepsilon$, but the strains calculated from the reflected signals are instable at the high strain level. The transverse compression on the sensor head results in the split of the reflected peaks, and the calculating algorism from the split peaks is not robust under the various signal condition. The FBG sensors fracture near $7500\mu\varepsilon$ level and lose their function permanently.

  • PDF

The Hybrid Rocket Internal Ballistics with Two-phase Fluid Modeling for Self-pressurizing $N_2O$ I (자발가압 성질을 가진 아산화질소의 2상유체 모델링을 통한 하이브리드 로켓 내탄도 해석 I)

  • Lee, Jung-Pyo;Rhee, Sun-Jae;Woo, Kyoung-Jin;Oh, Ji-Sung;Jung, Sik-Hang;Moon, Hee-Jang;Sung, Hong-Gye;Kim, Jin-Kon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.45-49
    • /
    • 2011
  • The blow-down oxidizer feed system with self-pressurizing $N_2O$ has more advantages than the regulated system. However, it is difficult to predict the exhaust flow rate because there exist two phases in the $N_2O$ tank - liquid phase and gas phase, and the properties of $N_2O$ in storage tank are varied continuously during blow-down. In this paper, a method that can analyse simply the blow-down oxidizer feed system is studied. The properties of saturated $N_2O$ are found from the NIST data base, and mass flow through the orifice is modeled as NHNE. Cold flow test with hybrid rocket combustor is performed for the comparison where the results should found from the good agreement.

  • PDF