• 제목/요약/키워드: Pressurized Water Reactor Internals

검색결과 15건 처리시간 0.022초

PWSCC and System Engineering Development of Internal Inspection and Maintenance Methodology for RCS

  • Abdallah, Khaled Atya Ahmed;Mesquita, Patricia Alves Franca de;Yusoff, Norashila;Nam, GungIhn;Jung, JaeCheon;Lee, YoungKwan
    • 시스템엔지니어링학술지
    • /
    • 제12권1호
    • /
    • pp.89-103
    • /
    • 2016
  • Due to safety of the plant, it became very clear the importance of study occurrence reactor coolant system (RCS) issues specially the primary water stress corrosion cracking (PWSCC). The Systems Engineering (SE) approach is characterized by the application of a structured engineering methodology for the design of a complex system or component. Robotic devices have been used for internal inspection, maintenance and performing remote welding and inspection in high-radiation areas. In this paper, PWSCC overview and inlay and over lay welding methodology introduced, concept of robotic device that can be inserted into the piping via Steam Generator (SG) main way to access to primary piping of pressurized water reactor (PWR) is developed based on SE methodology. A 3D model of the inspection system was developed along with the APR1400 (Advanced Power Reactor)reactor coolant systems (RCS) and internals with virtual 3D simulation of the operation for visualization to prove the validity of the concept.

Failure Evaluation Plan of a Reactor Internal Components of a Decommissioned Plant

  • Hwang, Seong Sik;Kim, Sung Woo;Choi, Min Jae;Cho, Sung Hwan;Kim, Dong Jin
    • Corrosion Science and Technology
    • /
    • 제20권4호
    • /
    • pp.189-195
    • /
    • 2021
  • A technology for designing and licensing a dedicated radiation shielding facility needs to be developed for safe and efficient operation an R&D center. Technology development is important for smooth operation of such facilities. Causes of damage to internal structures (such as baffle former bolt (BFB) of pressurized water reactor) of a nuclear power reactor should be analyzed along with prevention and countermeasures for similar cases of other plants. It is important to develop technologies that can comprehensively analyze various characteristics of internal structures of long term operated reactors. In high-temperature, high-pressure operating environment of nuclear power plants, cases of BFB cracks caused by irradiated assisted stress corrosion cracks (IASCC) have been reported overseas. The integrity of a reactor's internal structure has emerged as an important issue. Identifying the cause of the defect is requested by the Korean regulatory agency. It is also important to secure a foundation for testing technology to demonstrate the operating environment for medium-level irradiated testing materials. The demonstration testing facility can be used for research on material utilization of the plant, which might have highest fluence on the internal structure of a reactor globally.

가압형 경수로 스테인리스강 내부 구조물의 조사유기 응력부식균열에 대한 통계적 수명 예측 (Statistical Life Prediction on IASCC of Stainless Steel for PWR Core Internals)

  • 김성우;황성식;이연주
    • 대한금속재료학회지
    • /
    • 제50권8호
    • /
    • pp.583-589
    • /
    • 2012
  • This work is concerned with a statistical approach to the life prediction on irradiation-assisted stress corrosion cracking (IASCC) of stainless steel (SS) for core internals of a pressurized water reactor (PWR). The previous results of the time-to-failure of IASCC measured on neutron-irradiated stainless steel components were statistically analyzed in terms of stress and irradiation. The accelerating life testing model of IASCC of cold worked Type 316 SS was established based on an inverse power model with two stress-variables, the applied stress and irradiation dose. Considering the variation of the yield strength and applied stress with the irradiation dose in the model, the remaining life of the baffle former bolt was statistically predicted during operation under complex environments of stress and irradiation.

Illustration of Nagra's AMAC approach to Kori-1 NPP decommissioning based on experience from its detailed application to Swiss NPPs

  • Volmert, Ben;Bykov, Valentyn;Petrovic, Dorde;Kickhofel, John;Amosova, Natalia;Kim, Jong Hyun;Cho, Cheon Whee
    • Nuclear Engineering and Technology
    • /
    • 제53권5호
    • /
    • pp.1491-1510
    • /
    • 2021
  • This work presents an illustration of Nagra's AMAC (Advanced Methodology for Activation Characterization) approach to the South Korean pressurized water reactor Kori-1 decommissioning. The results achieved are supported by the existing experience from the detailed AMAC applications to Swiss NPPs and are used not only for a demonstration of the applicability of AMAC to South Korean NPPs, but also for a first approximation of the activated waste volumes to be expected from Kori-1. A packaging concept based on the above activation characterization is also presented, using the AMAC algorithmic optimization software ALGOPACK leading to the minimum number of waste containers needed given the selected packaging constraints. Nagra's AMAC enables effective planning before and during NPP decommissioning, including recommendations for cutting profiles for diverse reactor components and building structures. Finally, it is expected to lead to significant cost savings by reducing the number of expensive waste containers, by optimizing a potential melting strategy for metallic waste as well as by significantly limiting the number of radiological measurements. All information about Kori-1 used for the purpose of this study was collected from publicly available sources.

경수로 구조재 내 불순물 조성 및 함량이 중성자 방사화 핵종 재고량에 미치는 영향 분석 (The Effects of Impurity Composition and Concentration in Reactor Structure Material on Neutron Activation Inventory in Pressurized Water Reactor)

  • 차길용;김순영;이재민;김용수
    • 방사성폐기물학회지
    • /
    • 제14권2호
    • /
    • pp.91-100
    • /
    • 2016
  • 경수로 원전을 대상으로 원전 내 방사화 대상 물질인 스테인리스강, 탄소강 및 콘크리트의 불순물 정보 적용여부에 따른 방사화 핵종 재고량을 계산하였다. 본 연구에서 탄소강은 압력용기 물질에 사용되었고, 스테인리스강은 압력용기 내부 물질에 사용되었으며, 일반 콘크리트가 생체 차폐체에 사용되었다. 금속 물질에 대해서는 참고자료 1개의 불순물 함량 정보를 적용하였고, 콘크리트 물질에서는 참고자료 5개의 불순물 함량 정보를 적용하여 평가를 수행하였다. 방사화 핵종 재고량 전산해석 시 중성자속 계산에는 MCNP 전산코드를, 방사화 계산에는 FISPACT 전산코드를 각각 사용하였다. 계산 결과, 금속 물질에서 불순물을 포함한 경우가 그렇지 않은 경우보다 비방사능이 2배 이상 높았으며, 특히 콘크리트에서는 불순물을 포함한 경우가 그렇지 않은 경우보다 최대 30배 이상 비방사능이 높게 계산되었다. 방사화 핵종의 생성반응과 재고량을 분석한 결과, 금속 구조물에서는 불순물 중 Co원소와 중성자에 의해 생성되는 방사화 핵종인 Co-60이, 콘크리트에서는 불순물 중 Co, Eu 원소와 중성자에 의해 생성되는 방사화 핵종인Co-60, Eu-152, Eu-154 이 방사성폐기물 준위 결정에 큰 영향을 미치고 있음을 확인하였다. 본 연구의 결과는 원전 해체 계획 수립 시 방사화 핵종 재고량 평가 및 규제에 활용될 수 있을 뿐 아니라, 해체를 고려한 원전 또는 원자력시설의 설계 단계에서도 참고자료로 활용 될 것으로 판단된다.