• Title/Summary/Keyword: Pressure-drop reduction

Search Result 145, Processing Time 0.027 seconds

Study of Convex Cyclone with Continuous Curve (연속적인 곡선으로 정의 되는 볼록한 형상의 사이클론에 대한 연구)

  • Heo, Kwang-Su;Seol, Seoung-Yun;Li, Zhen-Zhe
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2757-2762
    • /
    • 2007
  • A cyclone design concept named Convex cyclone was developed to reduce pressure losses. Contrary to conventional cylinder-on-con type cyclone, inner wall of Convex cyclone are defined with a continuous curve and it has convex shape body. The discontinuity of inner diameter variation rate of cylinder-on-con type cyclone cause additional pressure loss. Continuous wall of Convex cyclone prevent additional pressure loss. In order to verify Convex cyclone design concept, we make a comparative experiments between Stairmand HE and Convex cyclone. Experimental Convex cyclone designed based on Stairmand HE model, and inner wall are defined with circular arch. The experimental result clearly shows that Convex cyclone can achieve maximum 50% pressure loss reduction with a few percent of collection efficiency drop. In addition, the experimental results indicated the existence of optimum convexity, minimum pressure loss, of cyclone wall.

  • PDF

Experimental Study on Drag Reduction Effects of New Non-Ionic Surfactants

  • Tae, Choon-Sub;Cho, Sung-Hwan
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.14 no.4
    • /
    • pp.147-155
    • /
    • 2006
  • The drag reduction (DR) and heat transfer efficiency reduction (ER) of non-ionic surfactant were investigated as a function of fluid velocity, temperature, and surfactant concentration. An experimental apparatus consisting of two temperature controlled water storage tanks, pumps, test specimen pipe and the piping network, two flow meters, two pressure gauges, a heat exchanger, and data logging system was built. From the experimental results, it was concluded that existing alkyl ammonium surfactant (CTAC Cethyl Trimethyl Ammonium Chloride) had DR of $0.6{\sim}0.8$ at $1,000{\sim}2,000ppm$ concentration with fluid temperature ranging between $50{\sim}60^{\circ}C$. However, the DR was very low when the fluid temperature was $70{\sim}80^{\circ}C$. The new amine oxide and betaine surfactant(SAOB Stearyl Amine Oxide + Betaine) had lower DR at fluid temperatures ranging between $50{\sim}60^{\circ}C$ compared with CTAC. However, with fluid temperature ranging between $70{\sim}80^{\circ}C$ the DR was $0.6{\sim}0.8$ when the concentration level was $1,000{\sim}2,000ppm$.

Numerical investigation on the flow noise reduction due to curved pipe based on wavenumber-frequency analysis in pressure relief valve pipe system (감압 밸브 배관 시스템 내 파수-주파수 분석을 통한 곡관의 유동소음 저감에 대한 수치적 연구)

  • Garam, Ku;Cheolung, Cheong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.6
    • /
    • pp.705-712
    • /
    • 2022
  • A sudden pressure drop caused by the pressure relief valve acts as a strong noise source and propagates the compressible pressure fluctuation along the pipe wall, which becomes a excitation source of Acoustic Induced Vibration (AIV). Therefore, in this study, the numerical methodology is developed to evaluate the reduction effect of compressible pressure fluctuation due to curved pipe in the pressure relief valve system. To describe the acoustic wave caused by density fluctuation, unsteady compressible Large Eddy Simulation (LES) technique, which is high accuracy numerical method, Smagorinsky-Lilly subgrid scale model is applied. Wavenumber-frequency analysis is performed to extract the compressible pressure fluctuation component, which is propagated along the pipe, from the flow field, and it is based on the wall pressure on the upstream and downstream pipe from the curved pipe. It is shown that the plane wave and the 1st mode component in radial direction are dominant along the downstream direction, and the overall acoustic power was reduced by 3 dB through the curved pipe. From these results, the noise reduction effect caused by curved pipe is confirmed.

A Study on Improvement of Efficiency of Suction Muffler for Compressor (압축기용 흡입머플러의 성능개선에 관한 연구)

  • Jeong, Gyeong-Hun;Jung, Kyung-Hun;Lee, Eun-Young;Kim, Woo-Young;Lee, You-Yub;Hwang, Won-Gul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.2
    • /
    • pp.220-227
    • /
    • 2002
  • The design of suction muffler for compressor aims to achieve a maximum noise reduction and a minimum pressure loss. Until now, the design process has been performed experimentally rather than theoretically. In this paper, to achieve the maximum noise reduction and minimum pressure loss. we studied the effect of the shape and volume of the expansion tube of the muffler on TL and pressure drop. We made an extensive use of computer program such as SYSNOISE. FLUENT, and STAR-CD to calculate the TL and pressure distribution of suction muffler. The design of the muffler is optimized with respect to flow loss and TL. Experiments are performed to check the result of design change, which proves satisfactory results. It is expected that this process can reduce time to design a muffler in the fields.

Long term drag reduction experiments of surfactant solutions in a pilot-scaled system (Pilot규모에서 계면활성제용액의 장기 마찰저항감소에 관한 연구)

  • Park, S.R.;Lee, S.N.;Moon, S.H.;Yoon, H.K.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.9 no.3
    • /
    • pp.401-409
    • /
    • 1997
  • The long term drag reduction characteristics of Habon-G solution were investigated in the KIER pilot-scaled district heating simulation system. Test runs were implemented for 30 days without interruption. Pressure drop, flow rate and power consumption of surfactant (Habon-G) solution were regularly observed and compared with those of plain water. The experimental results suggest that the surfactant can be effectively applied to the DH transmission system for considerably long period wthout significant loss of its drag reduction capability even though the concentration of the additive may gradually decrease in the first stage of the experiment because of absorption.

  • PDF

A Study on the Characteristics of Flow with Polymer Additives (고분자물질 첨가에 의한 유동특성에 관한 연구)

  • 차경옥;김재근
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.3
    • /
    • pp.176-186
    • /
    • 1996
  • The phenomena of drag reduction using small quantities of a liner macromolecules has attracted the attention of many experimental investigations. On the other hand drag reduction in two phase flow can be applied to the transport of crude oil, phase change system such as chemical reactor, pool and boiling flow, and to flow with cavitation which occurs pump impellers. But the research on dragreduction in two phase flow is not sufficient. The purpose of the present work is to evaluate the drag reduction by measuring pressure drop, void fraction, mean liquid velocity and turbulent intensity whether polymer additives a horizontal single and two phase system or not. Flow pattern of air-water two phase flow was classified by electrical conductivity probe signal. Velocities and turbulent intensities of signal were measured simultaneously with a Hot-film anemometer.

  • PDF

Development of the Dual Cyclone System for a High Efficient Vacuum Cleaner (사이클론 집진 원리를 적용한 진공청소기 개발에 관한 연구)

  • Lee, Jae-Keun;Lee, Jung-Eun;Kim, Seong-Chan;Cho, Min-Chul;Hyun, Choong-Nam;Kwack, Dong-Jin;Lim, Kyung-Suk;Lee, Sung-Hwa;Yang, Byung-Sun;Ji, Heon-Pyung;Jeong, Hoi-Kil;Park, Deog-Bae;Liu, Benjamin Y.H.
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.644-649
    • /
    • 2000
  • A new cyclone system for the vacuum cleaner to collect dusts has been studied experimentally and numerically to meet the constant suction power, hygienic exhaust and a reduction of maintenance cost. The cyclone system of the vacuum cleaner consists of twin cyclones for improving dust collection efficiency. The first. cyclone catches large dust particles and the second one having two separated flows to decrease pressure drop collects small dust particles. The optimal design factors such as dust collection efficiency, pressure drop, and cut-size are investigated from the experimental results by the Taguchi method. Cyclone cleaner systems designed in this study has a good Performance taking into account the dust collection efficiency of 93% and the cut-size of $1.6{\mu}m$ in mass median diameter at the flow rate of 1 CMM. The cyclone vacuum cleaner showed the potential to be an effective method to collect dusts generated in the household.

  • PDF

Heat Flow Characteristics on Type of Heat Transfer Plate for White Smoke Reduction under Uniform Flow Condition (균일유동에서 백연저감용 전열판 형태에 대한 열유동 특성)

  • Son, Jun;Cha, Jae Min;Wang, Zhen Huan;Kwon, Young Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.1
    • /
    • pp.591-596
    • /
    • 2016
  • Numerical analyses were performed on the heat flow characteristics of a heat transfer plate with six different shapes (basic, rectangle, triangle, wave type) to reduce the level of white smoke at a stack. In this study, to examine the heat transfer performance (heat transfer capacity, pressure drop, turbulence kinetic energy, heat transfer coefficient) on the heat transfer plates, simulations were conducted using the commercial computational fluid dynamics software, ANSYS CFX Ver.14 under uniform flow conditions. The thermal flow phenomenon in a channel with six heat transfer plates could be predicted adequately under uniform flow conditions. The heat transfer capacity, pressure drop, turbulence kinetic energy, and heat transfer coefficient were affected by the flow rate, aspect ratio and plate shape. These results provide guidelines to design an effective heat exchanger with the wave type to reduce white smoke.

A study on the drag reduction in a horizontal two phase flow (수평 2상유동에서 마찰저항감소에 관한 연구)

  • Cha, Gyeong-Ok;Kim, Jae-Geun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.4
    • /
    • pp.1472-1480
    • /
    • 1996
  • The phenomena of drag reduction using small quantities of a linear macromolecules has attracted the attention of experimental investigations. It is well known that drag reduction in single phase liquid flow is affected by polymer materials, molecular weight, polymer concentration, pipe diameter and flow velocity. But the research on drag reduction in two phase flow has not intensively investigated. Drag reduction can be applied to phase change system such as chemical reactor, pool and boiling flow, and to flow with cavitation which occurs pump impellers. The purpose of the present work is to evaluate the drag reduction by measuring pressure drop, mean liquid velocity, and turbulent intensity and determine the effects of polymer additives on drag reduction in horizontal two phase flow. Experimental results show higher drag reduction using co-polymer comparing with using polyacrylamide. Mean liquid velocities increase as adding more polymer, and turbulent intensities decrease as the distance for the wall in inversed.

High Purity Hydrogen Production by Redox Cycle Operation (산화-환원 싸이클 조업에 의한 고순도 수소생성)

  • Jeon, Bup-Ju;Park, Ji-Hun
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.21 no.5
    • /
    • pp.355-363
    • /
    • 2010
  • High purity hydrogen, 97-99 vol.%, with CO at just ppm levels was obtained in a fixed bed of iron oxide employing the steam-iron cycle operation with reduction at 823K and oxidation in a steam-$N_2$ mixture at 773K TGA experiments indicated that temperature of the reduction step as well as its duration are important for preventing carbon build-up in iron and the intrusion of $CO_2$ into the hydrogen product. At a reduction temperature of 823K, oxide reduction by $H_2$ was considerably faster than reduction by CO. If the length of the reduction step exceeds optimal value, low levels of methane gas appeared in the off-gas. Furthermore, with longer durations of the reduction step and CO levels in the reducing gas greater than 10 vol.%, carbidization of the iron and/or carbon deposition in the bed exhibited the increasing pressure drop over the bed, eventually rendering the reactor inoperable. Reduction using a reducing gas containing 10 vol.% CO and a optimal reduction duration gave constant $H_2$ flow rates and off-gas composition over 10 redox reaction cycles.