• Title/Summary/Keyword: Pressure-Swirl Nozzle

Search Result 94, Processing Time 0.025 seconds

A Study on Combustion Process of Biodiesel Fuel using Swirl Groove Piston (Swirl Groove Piston에 의한 바이오 디젤연료의 연소과정에 관한 연구)

  • Bang, Joong-Cheol;Kim, Sung-Hoon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.1
    • /
    • pp.105-113
    • /
    • 2009
  • The performance of a direct-injection type diesel engine often depends on the strength of swirl or squish, shape of combustion chamber, the number of nozzle holes, etc. This is of course because the combustion in the cylinder was affected by the mixture formation process. In this paper, combustion process of biodiesel fuel was studied by employing the piston which has several grooves with inclined plane on the piston crown to generate swirl during the compression stroke in the cylinder in order to improve the atomization of high viscosity fuel such as biodiesel fuel and toroidal type piston generally used in high speed diesel engine. To take a photograph of flame, single cylinder, four stroke diesel engine was remodeled into two stroke visible engine and high speed video camera was used. The results obtained are summarized as follows; (1) In the case of toroidal piston, when biodiesel fuel was supplied to plunger type injection system which has very low injection pressure as compared with common-rail injection system, the flame propagation speed was slowed and the maximum combustion pressure became lower. These phenomena became further aggravated as the fuel viscosity gets higher. (2) In the case of swirl groove piston, early stage of combustion such as rapid ignition timing and flame propagation was activated by intensifying the air flow in the cylinder. (3) Combustion process of biodiesel fuel was improved by the reason mentioned in paragraph (2) above. Consequently, the swirl grooves would also function to improve the combustion of high viscosity fuel.

External Spray Characteristics of Deflector Nozzle (충돌형 노즐의 분무형상 연구)

  • Kim, K.H.;Choi, Y.H.;Yoon, S.J.
    • Journal of ILASS-Korea
    • /
    • v.7 no.1
    • /
    • pp.29-35
    • /
    • 2002
  • This study describes the external spray characteristics of deflector nozzle such as the breakup procedures of liquid sheet, spray angle, breakup length and bubble behaviors of spray at deflector nozzle. In order to visualize the spray behaviors shadow graphy technique were used. According to the increase injection pressure, deveopment of the spray passes through the dribbling, distoted jet, closed bubble due to the contraction by form a conical sheet like as the simplex swirl atomizer. As trying the analysis of the ratio of bubble length and width it was found that the ratios is comparable. Spray cone angle was nearly $90^{\circ}$.

  • PDF

Numerical analysis on the characteristics of disel spray for variation of injection spray angle and swirl ratio. (분사각 및 스월 변화에 따른 디젤분무의 특성에 관한 수치 해석)

  • Jung H.;Cha K. S.;Park C. G.
    • Journal of computational fluids engineering
    • /
    • v.5 no.3
    • /
    • pp.1-7
    • /
    • 2000
  • In high-pressure diesel engine, the injected fuel spray impinges on the piston cavity surface due to the short distance between the injection nozzle and the cavity wall. The behavior of the impinging spray has the great influence on the dispersion of fuel, the evaporation, and the mixture formation process. In this study, the numerical simulation using the GTT code was performed to study the gas flows, the spray behaviors, and the fuel vapor distributions in the combustion of a D.I engine for variation of spray angle and swirl ratio.

  • PDF

Visualization and Numerical Analysis of Non-evaporating Spray with a Swirl-Type GDI Injector (GDI 와류 분사노즐에 의한 비증발 분무의 가시화 및 수치해석)

  • 원영호;강수구
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.4
    • /
    • pp.22-28
    • /
    • 2003
  • Predictions of the fuel spray dispersion and mixing processes are very important to improve the fuel consumption and exhaust emissions in GDI engines. Numerical and experimental analysis of the sprays with a swirl injector have been conducted. A numerical analysis is carried out using KIVA-II code with modified spray models. Experimental measurements are performed to show the global spray images and the local images near nozzle tip using laser sheet visualization technique. Computed and measured spray characteristics such as spray width, tip penetration are compared, and good agreements can be achieved. The spray head vortex is stronger as the injection pressure increases, but numerical calculations cannot show the head vortex properly.

Spray Charateristics of Water/Oil Emulsified Fuel in Pressure-Swirl Nozzle (압력선회노즐에서 물-기름 유화연료의 분무특성)

  • Rhim, J.H.;No, S.Y.
    • Journal of ILASS-Korea
    • /
    • v.5 no.1
    • /
    • pp.5-12
    • /
    • 2000
  • The beneficial aspects of applying emulsion fuels to combustion systems may be due to the changes of fuel properties which lead to the enhanced atomization characteristics. The spray characteristics of water/oil emulsified fuel injected from the pressure-swirl(simplex) atomizer using for oil burner were investigated. Four different water contents from 10 to 40 % by volume at 10% increment were prepared by mixing with the different contents of surfactants. Total amount of surfactant used was varied from 1 to 3 % by volume. This study demonstrates the influence of water and surfactant contents of emulsified fuel, injection pressure on the spray characteristics, i.e. Sauter mean diameter(SMD) and spray angle. The drop size distribution of the emulsified fuel spray was measured with a Malvem particle sizer. In order to measure the spray angle, the digital image processing was employed by capturing multiple images of the spray with 3-CCD digital video camera. It was evident that the addition of water and surfactant changes fuel properties which are the key parameters influencing the atomization of the spray. The increase in surfactant content results in the decrease of SMD and the increase in spray angle. The droplets decease with increase in injection pressure, but the influence of injection pressure in this experimental condition was less important than expected. The more viscous fuel with the increase of water content exhibits the larger droplets in the centerline of the spray, and the less viscous fuel in the outer edges of the spray. The increase in axial position from the nozzle causes the spray angle to decrease. The spray angle decreases with increase in water content. This is due to increase in viscosity with increase in water content.

  • PDF

Pan-shaped Spray Characteristics of GDI High Pressure Slit Nozzle Injector (가솔린 직접분사식 고압 슬릿 노즐 분사기의 팬형 분무 특성 고찰)

  • Song, Bhum-Keun;Kim, Won-Tae;Kang, Shin-Jae
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.6
    • /
    • pp.70-76
    • /
    • 2005
  • A new stratified charge combustion system has been introduced and developed for GDI engines. Before this new GDI system, the stratified mixture was formed by a high pressure swirl injector. But, the special feature of new system is employed of a thin fan-shaped fuel spray formed by a slit type nozzle. Also, this system has been adopted a shell-shaped piston cavity. We made high pressure gasoline injection system and investigated the fan-shaped spray characteristics such as spray tip penetration, spray angle, SMD and velocities of droplets using PDPA(Phase Doppler Particle Analyzer) system and spray visualization system to obtain the concept of the new design and the fundamental data for the next generation GDI system. The experiment was performed at the injection pressures of 5 and 9MPa under the atmospheric condition.

Spray Characteristics of the Rocket Oxidizer-rich Preburner Injection System

  • Yang, Joon-Ho;Choi, Seong-Man;Han, Young-Min
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.255-259
    • /
    • 2008
  • This paper presents the spray characteristics of the oxidizer rich preburner injector which can be used in the high-thrust rocket system. We designed the basic shape of the liquid-liquid coaxial swirl injector for the rocket oxidizer rich preburner injection system. To understand the spray angle variation with the high pressure environment, the spray visualization in the high pressure chamber was preformed. Also we measured the droplet velocity, the Sauter Mean Diameter(SMD), the volume flux and the number density with the PDPA system by using water in atmospheric pressure. The results show that the spray angle is reduced by increasing ambient pressure and maximum droplet velocity is shown from a nozzle tip and then the droplet velocity decreases as a spray moves to the downstream. The SMD decreases on the axial distance from 20 mm to 50 mm but it increases over 50 mm. That is due to the increasing number of collision with each droplet and interaction with ambient air on going downstream direction.

  • PDF

The Experimental Study on the Lift-off Height due to Momentum Ratio in Swirl-Coaxial Injector (2유체 동축인젝터의 공급 운동량비가 화염부상거리에 미치는 영향에 관한 실험적 연구)

  • Moon, I.Y.;Kim, Y.;Park, H.H.;Kim, S.J.
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.4 no.1
    • /
    • pp.30-35
    • /
    • 2000
  • The experimental study on the lift-off height of diffusion flames was conducted to investigate the damage of swirl-coaxial injector used in $GO_2$/kerosene rocket engine during initial stage of ignition. To investigate the causes of damage and to prevent further damage of the injector, experimental injector was designed and hot fire tests were performed with varying propellant momentum ratio($\frac{Momentum of {GO_2}}{Momentum of Kerosene}$) from 1 to 12. In experimental coaxial injector, kerosene is sprayed from the central nozzle with swirl and $GO_2$ sprayed around the kerosene nozzle in the direction parallel to the axis of combustion chamber. Chamber pressure are close to the atmospheric condition. Lift-off height was measured by still images from camcoder and average values were used as data.

  • PDF

Study on Discharge Coefficient Variations of Bi-Swirl Injectors with Working Conditions (작동 조건에 따른 이중 와류 분사기 유량 계수 변화 연구)

  • Seo, Seong-Hyeon;Ahn, Kyu-Bok;Han, Yeoung-Min;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.05a
    • /
    • pp.177-180
    • /
    • 2010
  • It has been studied the effect of mixture ratio and chamber pressure on variations of discharge coefficients. Combustion experiments of bi-liquid swirl coaxial injectors were conducted at fuel-rich conditions with liquid oxygen and kerosene. Using two types of injectors for the experiments, characteristics of the discharge coefficient have been identified from variations in a diameter of the fuel nozzle and a momentum ratio along with the change of a LOx spray angle. It is concluded that discharge coefficients do not vary because of no change of flame structures from the fact that the fuel swirl chamber is completely filled up with fuel flow.

  • PDF

Effect of Air Velocity on Combustion Characteristics in Small-Scale Burner

  • Laryea, Gabriel Nii;No, Soo-Young
    • Journal of the Korean Society of Combustion
    • /
    • v.10 no.1
    • /
    • pp.1-6
    • /
    • 2005
  • This paper presents the combustion characteristics of hydrocarbon fuel from a conventional pressure-swirl nozzle of a small-scale burner. The nozzle has orifice diameters of 0.256 mm and liquid flow rates ranging from 50 to 64 mL/min were selected for the experiments. The furnace temperature distribution along the axial distance, the gas emission such as CO, $CO_2$, NOx, $SO_2$, flue gas temperature, and combustion efficiency were studied. The local furnace and flue gas temperatures decreased with an increase in air velocity. At injection pressures of 1.1 and 1.3 MPa the maximum furnace temperatures occurred closer to the burner exit, at an axial distance of 242 mm from the diffuser tip. The CO and $CO_2$concentrations decreased with an increase in air velocity, but they increased with an increase in injection pressure. The effect of air velocity on NOx was not clearly seen at low injection pressures, but at injection pressure of 1.3 MPa it decreased with an increase in air velocity. The effect of air velocity on $SO_2$ concentration level is not well understood. The combustion efficiency decreased with an increase in air velocity but it increased with an increase in injection pressure. It is recommended that injection pressure less than 0.9 MPa with air velocity not above 8.0 m/s would be suitable for this burner.

  • PDF