• Title/Summary/Keyword: Pressure surge

Search Result 220, Processing Time 0.028 seconds

Experimental Study on Cavitation Instability of a Solution Pump Inducer in an Absorption Chiller-Heater (흡수식 냉온수기내 용액펌프 Inducer의 Cavitation 불안정성에 대한 실험적 연구)

  • Seo, Min;Lee, Kyung-Hoon;Kang, Shin-Hyung
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2434-2439
    • /
    • 2008
  • This paper was studied on the cavitation instability of a Solution Pump Inducer in an absorption chiller-heater. Inlet pressure of LiBr and rotational speed at nominal mode are 2,800 Pa and 3,500 rpm respectively. Due to the marginal operation of available NPSH, the cavitation performance of the inducer is critical for the stable operation without the deterioration of head performance. In the study, cavitation performance and its mode of instability was investigated experimentally. Water was used as the working fluid and the test inducer was scaled up as 1.75 times for detail measurements and flow visualization. Inlet pressure was controlled by a vacuum pump. This research focused on types of cavitation instability and phenomena to investigate the possibility of harmful damage due to cavitation instability. Casing wall pressure and instantaneous inlet pressure was measured to observe the unsteady flow characteristics. Through the visualization and spectrum analysis of pressure, the occurrence region and intensity of asymmetric cavitation and cavitation surge are analyzed in the test inducer.

  • PDF

The Typhoon Surges in the Southern Coast of Korea by Typhoon Brenda (태풍 Brenda에 의한 한국 남해안의 해일)

  • LEE In-Cheol;KIM Jong-Kyu;CHANG Sun-duck
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.27 no.5
    • /
    • pp.594-604
    • /
    • 1994
  • The storm surges caused by the typhoon Brenda in 1985 were studied by analysing tidal observation data at 7 stations along the south coast of the Korean peninsula. The tidal deviation at these stations along the coast are discussed in association with meteorological data. The sea level anomalies were studied by means of the Empirical Orthogonal Function (EOF) analysis and the Fast Fourier Transform(FFT) method. From the result of EOF analysis, the temporal and spatial variations of storm surge were described by the first mode of EOF, which is $73\%$ of the total variances during the passage of typhoon Brenda. From the results of FFT spectral analysis, the peak energy of the autospectrum for surge, atmospheric pressure, and wind stress appeared in the low frequency fluctuations band. The result of FFT analysis showed that the typhoon surge was related chiefly to the atmospheric pressure change in an open bay such as Cheju and Keomundo harbor, while it was influenced mainly by the wind stress in the semi-enclosed waters of Yeosu, Chungmu and Kadukdo.

  • PDF

Choked Surge in a Cavitating Turbopump Inducer

  • Watanabe, Toshifumi;Kang, Dong-Hyuk;Cervone, Angelo;Kawata, Yutaka;Tsujimoto, Yoshinobu
    • International Journal of Fluid Machinery and Systems
    • /
    • v.1 no.1
    • /
    • pp.64-75
    • /
    • 2008
  • During an experimental investigation on a 3-bladed and a 4-bladed axial inducer, a severe surge instability was observed in a range of cavitation number where the blade passage is choked and the inducer head is decreased from noncavitating value. The surge was stronger for the 4-bladed inducer as compared with a 3-bladed inducer with the same inlet and outlet blade angles. For the 4-bladed inducer, the head decreases suddenly as the cavitation number is decreased. The surge was observed after the sudden drop of head. This head drop was found to be associated with a rapid extension of tip cavity into the blade passage. The cause of surge is attributed to the decrease of the negative slope of the head-flow rate performance curve due to choke. Assuming that the difference between the 3 and 4-bladed inducers is caused by the difference of the blockage effects of the blade, a test was carried out by thickening the blades of the 3-bladed inducer. However, opposite to the expectations, the head drop became smoother and the instability disappeared on the thickened blade inducer. Examination of the pressure distribution on both inducers could not explain the difference. It was pointed out that two-dimensional cavitating flow analyses predict smaller breakdown cavitation number at higher flow rates, if the incidence angle is smaller than half of the blade angle. This causes the positive slope of the performance curve and suggests that the choked surge as observed in the present study might occur in more general cases.

Characteristics of Atmospheric Circulation and Heat Source related to Winter Cold Surge in Korea (한반도 겨울철 한파와 관련된 대기 순환과 열원의 특성)

  • Kim Maeng-Ki;Shin Sung-Chul;Lee Woo-Seop
    • Journal of the Korean earth science society
    • /
    • v.26 no.6
    • /
    • pp.560-572
    • /
    • 2005
  • This study investigates the characteristics of atmospheric circulation and the heat source $(Q_1)$ related to the winter cold surge in Korea from 1979 to 1999. The occurrence frequency of cold surge is about one event per year and $60\%$ of the total events occurred during the former period, before 1989. During the cold surge, the pressure pattern shows more dominant east-west dipole circulation pattern in the lower troposphere and the effect of upper level trough is stronger than normal cases. Temperature falling pattern over Korea shows that the pattern opposite to the temperature structure over Lake Baikal and temperature change has opposite signs between the low-middle level and upper level, with the boundary at 400 hPa. The analysis of heat source shows that atmospheric cooling by cold advection during the cold surge is balanced by adiabatic warming due to downward motion, indicating that the movement path of cold core is associated with that of heat sink. Therefore, the movement mechanism of the heat source and sink should be well known for understanding the maintenance mechanism of cold surge and predicting cold surges.

Dynamic Analysis on the Energy Regenerative Brake of Hydraulic Driven Systems (유압 구동계 에너지 제생 브레이크의 동특성 해석)

  • 이재구
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.4
    • /
    • pp.137-146
    • /
    • 2000
  • The hydraulic energy regnerative brake systems is introduced in this work. An accumulator stores kinetic energy during braking action, and the stored energy is used in a following acceleration action. The dynamic model of the brake system is derived for computer simulation study, and the Runge-Kutta numerical integration method is applied to the simulation work. Since the model contains several unknown parameters, these were determined by data which had been proceeded. Through a series of computer simulation , dynamic performance of the energy regenerative brake system is compared with that of a conventional system in which a conventional brake circuit is used. A series of test is carried out in the laboratory. The dynamic characteristics of the hydraulic motor system, such as the surge pressure and response time, are investigated in both brake action and acceleration action.

  • PDF

Capacity Design of Accumulator in Hydraulic Hybrid Drive Brake System (유압 하이브리드 구동 시스템의 축압기 용량 설계)

  • 이재구;김정현;김성동
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.04a
    • /
    • pp.15-21
    • /
    • 2001
  • An accumulator in hydraulic systems stores kinetic energy during braking action, and then that controls hasty surge pressure. An energy recovery system using accumulator seems to be advantageous for ERBS due to its high energy density. This study suggests a method to decide suitable accumulator volume for ERBS. The method is based upon energy conservation between kinetic energy of moving inertia and elastic energy of accumulator. The energy conversion was analyzed and a simple formula was derived. A series of computer simulation was done to verify effectiveness of the formula. The results of the simulation work were compared with those of experiments and these results show that the proposed design is effective for decision accumulator volume in ERBS.

  • PDF

Capacity Design of Accumulator in Hydraulic Regenerative Brake System (유압 재생 브레이크 시스템의 축압기 용량 설계)

  • 이재구;이재천;김정현;김성동
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.1
    • /
    • pp.104-113
    • /
    • 2002
  • An accumulator in hydraulic systems stores kinetic energy during braking action and then that controls hasty surge pressure. An energy recovery system using accumulator seems to be advantageous far ERBS due to its high energy density. This study suggests a method to decide suitable accumulator volume far ERBS. The method is based upon energy conservation between kinetic energy of moving inertia and elastic energy of accumulator. The energy conversion was analyzed and a simple formula was derived. A series of computer simulation was done to verify effectiveness of the formu1a. The results of the simulation work were compared with those of experiments and these results show that the proposed design is effective far decision of accumulator volume in ERBS.

Contruction and Performance Evaluation of the Surge Arrester for Transmission Class (송전급 피뢰기의 구조와 성능평가)

  • Kim, S.S.;Choi, I.S.;Cho, H.G.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.890-893
    • /
    • 2002
  • Since 1970s, varistors using metal-oxide resistors have been applied to Gapless surge arresters for power system. In the paper, the structure of metal-oxide surge arresters without gaps for 362kV GIS which is developed the first in korea has been introduced. And the main evaluation items for the metal-oxide resistors which are reference voltage test, residual voltage test, long duration current impulse withstand test and operating duty test is tested and evaluated.

  • PDF

Storm Surge Caused by the Typhoon in Kwangyang Port (광양항에서의 폭풍해일 검토)

  • Kim, Hyeon-Seong;Im, Hyo-Hyuc;Han, Dong-Hoon;Kim, Pyeong-Joong
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.205-206
    • /
    • 2006
  • The surges caused by the typhoon of Korea are analysed in Kwangyang Bay. The deviations of the high water level were $74{\sim}185cm$ and the maximum deviations of the water level (maximum surges) were $151{\sim}240cm$ in Kwangyang Bay during the typhoon. The major parameters of the maximum deviations of the water level are as follows : Analysis shows that the pressure drop increased the sea level by $43{\sim}59cm$, the flood of the Sumjin River by $4{\sim}5cm$ and the external surge propagation and wind setup by $97{\sim}192cm$.

  • PDF

Thermal stratification in a horizontal pipe of pressurizer surge line (가압기밀림관의 수평배관내 열성층유동)

  • Jung, I,S,;Kim, Y.;Youm, H.K.;Park, M.H.
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.4
    • /
    • pp.1449-1457
    • /
    • 1996
  • In this paper, the unsteady two dimensional model for the thermal stratification in the pressurizer surge line of PWR plant has been proposed to numerically investigate the heat transfer and flow characteristics. The dimensionless governing equations are solved by using the Control Volume Formulation and SIMPLE (Semi-Implicit Method for Pressure Linked Equations) algorithm. The temperature profile of fluids and pipe wall with time are shown when the thermal stratification occurs in the horizontal pipe. The numerical result shows that the maximum dimensionless temperature difference is about O.514 between hot and cold section of pipe wall at dimensionless time 1,632.