• Title/Summary/Keyword: Pressure resistance

Search Result 2,168, Processing Time 0.033 seconds

Permeation Characteristics of Wastewater Containing Si Fine Particles through Ultrafiltration

  • Park, Ho-Sang;Park, Young-Tae;Lee, Seok-Ki
    • Korean Membrane Journal
    • /
    • v.5 no.1
    • /
    • pp.31-35
    • /
    • 2003
  • The permeation characteristics of the wastewater containing Si fine particles were examined by ultrafiltration using the polyolefin tubular membrane module. Flux with time was due to the growth of Si cake deposited on the membrane surface and the pore plugging by fine particles. The rate of flux decline in the initial stage increased with the trans-membrane pressure. The pore blocking resistance was the dominant resistance at the initial period of filtration and the cake resistance began to dominate with the initial pore blocking resistance. The larger pores compared with the fine particles, the more the membrane pores could be blocked by the fine particles. Before and after treatment, the distribution of particle size was shifted toward to the left. Then, the average size of fine particles in the permeate was 20 nm.

The sensitivity of ship resistance to wall-adjacent grids and near-wall treatments

  • Park, Dong Woo;Lee, Sang Bong
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.10 no.6
    • /
    • pp.683-691
    • /
    • 2018
  • Numerical simulations of turbulent flows around KCS have been performed to study the sensitivity of ship resistance to wall-adjacent grids and disclose the influence of near-wall treatment on the sensitivity of ship resistance. The resistance coefficients of viscous and pressure forces were compared when using realizable $k-{\varepsilon}$ and SST $k-{\omega}$ turbulence models in structured and unstructured grids, respectively. The calculation of friction velocity was found to be mainly responsible for the reduction of viscous and total resistances when the height of wall-adjacent cells increased. Since the assumption of equilibrium state between turbulent production and dissipation was not met in a bulbous bow, it was more reasonable to iteratively calculate the friction velocity from empirical laws of the wall for near-wall treatment rather than explicitly estimate it from the turbulent kinetic energy.

The Effect of Tire Inflation Pressure on Soil Compaction and Tractive Performance of Tractor (타이어공기압에 따른 트랙터의 견인성능과 토양다짐)

  • 박원엽;이규승
    • Journal of Biosystems Engineering
    • /
    • v.27 no.6
    • /
    • pp.491-500
    • /
    • 2002
  • This study was carried out to investigate experimentally the effect of the tire inflation pressure of a tractor on soil compaction and tractive performance. Two kinds of field experiments were conducted using an agricultural tractor. One experiment is concerned with the tractive performance of the tractor at the three levels of tire inflation pressure; 50kpa, 100kpa and 200kpa, and the other one is about the soil compaction at the four levels of tire inflation pressure; 50kpa, 100kpa, 150kpa and 200kpa, at three different numbers of passes; 1, 3 and 5 passes. From the results of the field experiment, it was found that decreasing the tire inflation pressure decreased the motion resistance of tractor and increased the tractive force and tractive efficiency. The tractive and working performance of the tractor could be improved by the reduction of tire inflation pressure. Increasing the inflation pressure and the number of passes increased the soil compaction. Rate of compaction increased rapidly at the first pass and declined at subsequent passes. To reduce the effect of soil compaction for the whole field, it is recommended that tractor should follow the rut of the first pass from the subsequent passes, and decrease the inflation pressure of the driving tires up to allowable minimum level.

Current Status of Antimicrobial Resistance in Korea

  • Chong, Yun-Sop
    • The Journal of the Korean Society for Microbiology
    • /
    • v.35 no.5_6
    • /
    • pp.337-339
    • /
    • 2000
  • MRSA, erythromycin-resistant S. pyogenes, penicillin non-susceptible pneumococci, PPNG, ESBL-producing E. coli and K. pneumoniae, class C ${\beta}$-lactamase-producing E. coli, fluoroquinolone-resistant E. coli, aminoglycoside-resistant A. baumannii and P. aeruginosa are all prevalent in Korea, which suggest the presence of high levels of antimicrobial selective pressure and nosocomial spread of resistant bacteria. Rapid increase of VRE and emergence of fluoroquinolone-resistant gonococci and VIM-2 metallo-${\beta}$-lactamase-producing P. aeruginosa are recently observed new threats in Korea.

  • PDF

A Study on the Force Control in Resistance Spot Welding Process Using a Servo-Gun (서보건을 이용한 저항 점 용접 공정의 가압력 제어)

  • 오우석;김규식;강윤배
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.599-602
    • /
    • 1999
  • In this paper, we attempt to control the pressure between two specimens using a servo gun in the resistance spot welding process. Servo guns have some advantages over pneumatic guns in that the fast response, the precise position control, and the accurate torque control are assured by virtue of the servo motor control. To demonstrate the practical significance of our results, we present some experimental results..

  • PDF

Effect of Incidence Angle of Current on the Hydraulic Resistance Capacity of Clayey Soil (흐름의 입사각이 점성토 지반의 수리저항성능에 미치는 영향)

  • Kim, Young-Sang;Han, Byung-Duck;Kang, Gyeong-O
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.24 no.1
    • /
    • pp.26-35
    • /
    • 2012
  • Until now, study on the hydraulic resistance characteristics of the ground at the river and the ocean current has been focused on the behavior under uni-directional flow without the direction change of flow. However, recent research result shows that scour rate which were measured under the bi-directional flow was much higher than those measured under uni-directional flow for both fine grained and coarse soil. Since the direction of inflow and return flow at the shore, where the structure will be constructed, is not always $180^{\circ}$, effect of the incidence angle on the hydraulic resistance capacity of the ground should be examined. Using the improved EFA which can consider the direction change of flow, hydraulic resistance capacities of the artificially composed clayey fine grained soil and clayey sandy soil under $0^{\circ}$, $90^{\circ}$, $135^{\circ}$, $180^{\circ}$ flow angle of incidence were assessed. Test result shows that hydraulic resistance capacity decreases and scour rate increase with the increase of the incidence angle between inflow and return flow. For the low consolidation pressure condition, hydraulic resistance capacity of the fine grained soil decreases rapidly. While the hydraulic resistance capacity of the coarse grained soil decreases more rapidly than fine grained soil under high consolidation pressure. Eventually since the larger the incidence angle between inflow and return flow, the larger the scour rate. Hydraulic resistance capacity under bi-directional flow($0^{\circ}{\longleftrightarrow}180^{\circ}$) should be examined for the design purpose.

Shear Resisting Effects of Protruded Nails by Pressure Grouting (가압식 돌기네일의 전단저항 효과)

  • Hong, Cheorhwa;Lee, Sangduk
    • Journal of the Korean GEO-environmental Society
    • /
    • v.18 no.7
    • /
    • pp.13-20
    • /
    • 2017
  • Soil nailing is ground reinforcement method using the shear strength of ground and the pullout shear resistance force of nail. It is mainly used for reinforcement of cut slopes, earth retaining structures and retaining walls, etc. It may be designed considering the pullout resistance of nail in the case of earth retaining structure and retaining wall, but it should be designed considering not only pullout resistance but also shear and bending resistance in the case of slope. However, conservative designs considering only pullout resistance are being done and most of the studies are about increasing pullout resistance by improving of material, shape and construction method of nail. Actually, Shear bending deformations occur centering on the active surface in ground reinforced with the nail. The grout with relatively low strength is destroyed and separated from the reinforcing material. As a result, the ground is collapsed while reducing the frictional resistance rapidly. Therefore, it is necessary to develop the method to increase the shear resistance while preventing separation of nail and grout body. In this study, an experimental study was conducted on new soil nailing method which can increase shear resistance by forming protrusions through pressurized grouting after installing a packer on the outside of deformed bar.

The Impact of the Antibiotic Burden on the Selection of its Resistance among Gram Negative Bacteria Isolated from Children (항생제 사용량 변화에 따른 그람음성균주의 항생제 내성률의 변화 양상)

  • Kim, Seohee;Yoo, Reenar;Lee, Jina
    • Pediatric Infection and Vaccine
    • /
    • v.22 no.3
    • /
    • pp.178-185
    • /
    • 2015
  • Purpose: We investigated trends in antibiotic pressure and the antibiotic susceptibility of gram negative bacteria isolated from Korean children over 10 consecutive years. Methods: From January 2004 to December 2013, the antibiotic susceptibility of Klebsiella pneumoniae, Escherichia coli, Pseudomonas aeruginosa, and Acinetobacter baumannii blood isolates obtained from children <18 years of age was determined according to the 2009 Clinical and Laboratory Standards Institute guidelines. Antibiotic consumption data were also analyzed. Results: The prevalence of K. pneumoniae, E. coli, P. aeruginosa, and A. baumannii bacteremia was 4.6, 3.5, 3.4, and 2.2 cases/1,000 blood cultures/year, respectively. In K. pneumoniae, resistance to the third and fourth cephalosporin did not increase significantly. However, carbapenem-resistant K. pneumoniae first appeared in 2010, and the resistance rate increased to 9% between 2012 and 2013. Resistance to 3rd and 4th cephalosporin increased from 10% to 50% in E. coli, and resistance to carbapenem rose abruptly from 11% to 71% in A. baumannii (P for trend <0.01). However, such an increase of resistance was not observed in P. aeruginosa. There is a positive correlation between the resistance rate of cefepime in E. coli and the consumption of cefepime (r=0.900, P=0.037). Conclusion: The significant burden of antibiotic consumption and the high prevalence of antibiotic resistance to gram negative pathogen isolated from bacteremic children were observed. Empirical antibiotics should be wisely selected, and continued efforts to decrease the overall antibiotic pressure are mandatory, especially in highly resistant situations.

Study of the Diffusion of Phosphorus Dependent on Temperatures for Selective Emitter Doping Process of Atmospheric Pressure Plasma (대기압 플라즈마의 선택적 도핑 공정에서 온도에 의한 인(Phosphorus)의 확산연구)

  • Kim, Sang Hun;Yun, Myoung Soo;Park, Jong In;Koo, Je Huan;Kim, In Tae;Choi, Eun Ha;Cho, Guangsup;Kwon, Gi-Chung
    • Journal of the Korean institute of surface engineering
    • /
    • v.47 no.5
    • /
    • pp.227-232
    • /
    • 2014
  • In this study, we propose the application of doping process technology for atmospheric pressure plasma. The plasma treatment means the wafer is warmed via resistance heating from current paths. These paths are induced by the surface charge density in the presence of illuminating Argon atmospheric plasmas. Furthermore, it is investigated on the high-concentration doping to a selective partial region in P type solar cell wafer. It is identified that diffusion of impurities is related to the wafer temperature. For the fixed plasma treatment time, plasma currents were set with 40, 70, 120 mA. For the processing time, IR(Infra-Red) images are analyzed via a camera dependent on the temperature of the P type wafer. Phosphorus concentrations are also analyzed through SIMS profiles from doped wafer. According to the analysis for doping process, as applied plasma currents increase, so the doping depth becomes deeper. As the junction depth is deeper, so the surface resistance is to be lowered. In addition, the surface charge density has a tendency inversely proportional to the initial phosphorus concentration. Overall, when the plasma current increases, then it becomes higher temperatures in wafer. It is shown that the diffusion of the impurity is critically dependent on the temperature of wafers.

Effect of Pressure on Properties of the SiC-$TiB_2$ Electroconductive Ceramic Composites (SiC-$TiB_2$ 전도성(電導性) 복합체(複合體)의 특성(特性)에 미치는 가압(加壓)의 영향(影響))

  • Shin, Yong-Deok;Seo, Je-Ho;Ju, Jin-Young;Ko, Tae-Hun;Lee, Jung-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1228-1229
    • /
    • 2008
  • The composites were fabricated 61[vol.%] ${\beta}$-SiC and 39[vol.%] $TiB_2$ powders with the liquid forming additives of 12[wt%] $Al_2O_3+Y_2O_3$ as a sintering aid by pressure or pressureless annealing at 1,650[$^{\circ}C$] for 4 hours. Reactions between SiC and transition metal $TiB_2$ were not observed in the microstructure and the phase analysis of the SiC-$TiB_2$ electroconductive ceramic composites. Phase analysis of SiC-$TiB_2$ composites by XRD revealed mostly of ${\alpha}$-SiC(6H), $TiB_2$, and In Situ $YAG(Al_5Y_3O_{12})$. The relative density, the flexural strength and the Young's modulus showed the highest value of 88.32[%], 136.43[MPa] and 52.82[GPa] for pressure annealed SiC-$TiB_2$ composites at room temperature. The electrical resistivity showed the lowest value of 0.0162[${\Omega}{\cdot}cm$] for pressure annealed SiC-$TiB_2$ composite at 25[$^{\circ}C$]. The electrical resistivity of the pressure annealed SiC-$TiB_2$ composite was positive temperature coefficient resistance (PTCR) but the electrical resistivity of the pressureless annealed SiC-$TiB_2$ composites was negative temperature coefficient resistance(NTCR) in the temperature ranges from 25[$^{\circ}C$] to 700[$^{\circ}C$].

  • PDF