• Title/Summary/Keyword: Pressure resistance

Search Result 2,168, Processing Time 0.027 seconds

Numerical Analysis of Proportional Pressure Control Valve using Bondgraph (본드선도를 이용한 비례전자 감압밸브의 수치해석)

  • Yang, K.U.;Hue, J.K.
    • Journal of Power System Engineering
    • /
    • v.12 no.2
    • /
    • pp.62-70
    • /
    • 2008
  • The paper made a description of the method for numerical analysis and modeling of a proportional pressure control valve by bondgraph. The valve is a three port pressure regulator valve, consists of two subsystems; a proportional solenoid and a spool assembly. A purpose of this study is to analysis the dynamic characteristics of the valve using bondgraph method and to verified results that each of parameters has an effect on modeling. It considered the effect which the presence of solenoid, flow coefficient and non-linearity of resistance causes in the valve modeling. In particular, it is analyzed the effect that the solenoid interacted with modeling results and characteristics of the nonlinear resistance through orifice on the supply and discharge side of valve. Thus this paper described method to present nonlinear characteristics by bondgraph modeling method, so that we could know easily result that each parameters has an effect on the modeling.

  • PDF

Effects of Anisotropic Consolidation on Strength of Soils (이방압밀이 흙의 강도에 미치는 영향)

  • 강병희
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.3-14
    • /
    • 2000
  • Anisotropic consolidation, shear, a transportational component during or after deposition each may produce anisotropic fabrics, which result in the anisotropic properties of soils. Nevertheless, the isotropically consolidated compression triaxial tests are commonly used in practice to determine the strength of the anisotropically consolidated soils because of their practicality and simplicity. In this paper the effects of anisotropic consolidation on the strength properties of soils are discussed. For the sandy soils consolidated under a constant vertical consolidation pressure, the deformation modulus decreases with decreasing consolidation pressure ratio($\sigma$$\sub$3c/'/$\sigma$ sub 1c/'), but the liquefaction resistance increases. For the saturated cohesive soils, both the undrained shear strength and undrained creep strength decrese with decreasing the consolidation pressure ratio. When the in-situ strength properties of the anisotropically and normally consolidated soils are determined by the isotropically consolidated tests, the undrained shear strength and creep strength of saturated cohesive soils as well as the deformation modulus of sandy soils are measured to be higher than the rear in-situ values. This, therefore, could lead to a dangerous judgement in stability analysis

  • PDF

Fabrication of Metal Thin-Film Type Pressure Sensors (금속박막형 압력센서의 제작)

  • 최성규;김병태;남효덕;정귀상
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.587-590
    • /
    • 2000
  • This paper presents the characteristics of metal thin-film pressure sensors. The micro pressure sensors consists of a chrom thin-film, patterned on a Wheatstone bridge configuration, sputter-deposited onto thermally oxidized Si wafer an aluminium interconnection layer. The fabricated micro pressure sensors shows a low temperature coefficient of resistance, high-sensitivity, low non-linearity and excellent temperature stability. The sensitivity is 1.16~1.21 mV/V.kgf/$\textrm{cm}^2$ in the temperature range of 25~l0$0^{\circ}C$ and the maximum non-linearity is 0.21 %FS.

  • PDF

Computational study of the hemodynamics of the patients after the Fontan procedure (Fontan 시술 이후 환자의 혈류역학적 상태에 대한 수치적 연구)

  • Shim, Eun-Bo;Ko, Hyung-Jong;Kim, Kyung-Hoon;Kamm, Roger D.
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.371-376
    • /
    • 2000
  • In this study, the computational method is presented to simulate the hemodynamics of the patients after the Fontan procedure. The short-term feedback control models are implemented to assess the hemodynamic responses of the patients exposed to the stresses such as gravitational effect or hemorrhage. To construct the base line of the Fontan model, we assume an increase in venous tone, in heart rates, and in systemic resistance that are based on the clinical observations. For the verification of the present method we simulate the LBNP (lower body negative pressure) test for the normal and the Fontan model and we compare these with experimental data. Computational results show that the diastolic ABP(arterial blood pressure) increases but the systolic ABP decreases during LBNP. The increase in heart rate is due to the control system activated by the decreased mean ABP and CVP(central venous pressure). In case of the Fontan model, the increased venous tone is the reason of the diminished CVP change during LBNP. We also simulate 20% hemorrhage stress to the patient after the Fontan procedure and these results are compared with the experimental and the existing computational one. Computational results on the hemodynamics of patients after the Fontan procedure show that the mean ABP and cardiac output decrease. Heart rate and systemic resistance increase to compensate for the decrease in ABP. The sensitivity analysis according to the conduit resistance is also presented to delineate the effects of the local blood flow resistance. The cardiac output decreases according to the increase of the conduit resistance. The 50% increase in the conduit resistance causes about 3% decrease of cardiac output.

  • PDF

Applicability of Temperature Correction Trans-membrane Pressure as a Fouling Index of Membrane Water Treatment Process (막여과 정수처리 공정에서 온도보정차압 식의 파울링 지표로서의 활용성 검토)

  • Kim, Minjae;Lim, Jae-Lim;Lee, Kyung-Hyuk;Lee, Young-Joo;Kim, Suhan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.30 no.1
    • /
    • pp.1-8
    • /
    • 2016
  • Temperature correction trans-membrane pressure (TC-TMP) is frequently used as a fouling index in membrane water treatment plants. TC-TMP equation is derived based on an assumption that the total membrane resistance (i.e. the sum of the intrinsic membrane resistance and fouling resistance) is not affected by temperature. This work verified the validity of this assumption using microfiltration (MF) and ultrafiltration (UF) membranes with and without fouling. The foulants used in the work were kaolin (inorganic) and humic acid (organic). The intrinsic resistances of MF and UF membranes remains at constant values regardless of temperature change. When the same amount of foulants were accumulated on the membrane, inorganic fouling resistance with kaolin was constant regardless of temperature change while organic fouling resistance with humic acid decreased at higher temperatures, which means that TC-TMP cannot be used as a fouling index when organic fouling occurs in a real field application. Since TC-TMP underestimates the amount of fouling at higher temperatures, more attention should be necessary in the operation of membrane water treatment plant in a hotter season like summer.

Effect of Grid, Turbulence Modeling and Discretization on the Solution of CFD (격자, 난류모형 및 이산화 방법이 유동해석 결과에 미치는 영향)

  • Park, Dong-Woo;Yoon, Hyun-Sik
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.20 no.4
    • /
    • pp.419-425
    • /
    • 2014
  • The current work investigated the variation of numerical solutions according to the grid number, the distance of the first grid point off the ship surface, turbulence modeling and discretization. The subject vessel is KVLCC. A commercial code, Gridgen V15 and FLUENT were used the generation of the ship hull surface and spatial system and flow computation. The first part of examination, the effect of solutions were accessed depending on the grid number, turbulence modeling and discretization. The second part was focus on the suitable selection of the distance of the first grid point off the ship surface: $Y_P+$. When grid number and discretization were fixed the same value, the friction resistance showed differences within 1 % but the pressure resistance showed big differences 9 % depending on the turbulence modeling. When $Y_P+$ were set 30 and 50 for the same discretization, friction resistance showed almost same results within 1 % according to the turbulence modeling. However, when $Y_P+$ were fixed 100, friction resistance showed more differences of 3 % compared to $Y_P+$ of 30 and 50. Whereas pressure resistance showed big differences of 10 % regardless of turbulence modeling. When turbulence modeling and discretization were set the same value, friction, pressure and total resistance showed almost same result within 0.3 % depending on the grid number. Lastly, When turbulence modeling and discretization were fixed the same value, the friction resistance showed differences within 5~8 % but the pressure resistance showed small differences depending on the $Y_P+$.

A Study on Feasibility of the Phosphoric Paste Doping for Solar Cell using Newly Atmospheric Pressure Plasma Source (새로운 대기압 플라즈마 소스를 이용한 결정질 실리콘 태양전지 인(P) 페이스트 도핑에 관한 연구)

  • Cho, I-Hyun;Yun, Myoung-Soo;Jo, Tae-Hoon;Rho, Junh-Young;Jeon, BuII;Kim, In-Tae;Choi, Eun-Ha;Cho, Guang-Sup;Kwon, Gi-Chung
    • New & Renewable Energy
    • /
    • v.9 no.2
    • /
    • pp.23-29
    • /
    • 2013
  • Furnace and laser is currently the most important doping process. However furnace is typically difficult appling for selective emitters. Laser requires an expensive equipment and induces a structural damage due to high temperature using laser. This study has developed a new atmospheric pressure plasma source and research atmospheric pressure plasma doping. Atmospheric pressure plasma source injected Ar gas is applied a low frequency (a few 10 kHz) and discharged the plasma. We used P type silicon wafers of solar cell. We set the doping parameter that plasma treatment time was 6s and 30s, and the current of making the plasma is 70 mA and 120 mA. As result of experiment, prolonged plasma process time and highly plasma current occur deeper doping depth and improve sheet resistance. We investigated doping profile of phosphorus paste by SIMS (Secondary Ion Mass Spectroscopy) and obtained the sheet resistance using generally formula. Additionally, grasped the wafer surface image with SEM (Scanning Electron Microscopy) to investigate surface damage of doped wafer. Therefore we confirm the possibility making the selective emitter of solar cell applied atmospheric pressure plasma doping with phosphorus paste.

The Fabrication of Chromium Nitride Thin-Film Type Pressure Sensors for High Pressure Application and Its Characteristics (고압용 코롬질화박막형 압력센서의 제작과 그 특성)

  • 정귀상;최성규;서정환;류지구
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.6
    • /
    • pp.470-474
    • /
    • 2001
  • This paper describes the fabrication and characteristics of CrN thin-film type pressure sensors, in which the sensing elements were deposited on SuS. 630 diaphragm by DC reactive magnetron sputtering in an argon-nitride atmosphere(Ar-(10%)N$_2$). The optimized condition of CrN thin-film sensing elements was thickness range of 3500$\AA$ and annealing condition(300$\^{C}$, 3 hr) in Ar-10%N$_2$ deposition atmosphere. Under optimum conditions, the CrN thin-films for strain gauges is obtained a high resistivity, ρ=1147.65 $\mu$Ωcm, a low temperature coefficient of resistance, TCR=186ppm/$\^{C}$ and a high temporal stability with a good longitudinal, 11.17. The output sensitivity of fabricated CrN thin-film type pressure sensors is 2.36 mV/V, 4∼20nA and the maximum non-linearity is 0.4%FS and hysteresis is less than 0.2%FS.

  • PDF

Development of a High Temperature and Exactitude Pressure Sensors for Superior Environmental Characteristics (내환경성이 우수한 고온.고정밀용 압력센서의 개발)

  • 서정환;백명숙;임창섭
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.13-22
    • /
    • 2002
  • This paper presents characteristics of CrOx thin-film Strain gauge pressure sensors, which were deposited on SUS630 diaphragm by DC reactive magnetron sputtering in an argon-Oxide atmosphere(Ar-(10%)$O_2$). The optimized condition of CrOx thin-film strain gauges were thicknessrange of 2500$\AA$ and annealing condition ($350^{\circ}C$, 3 hr) in Ar-10 %$O_2$deposition atmosphere. Under optimum conditions, the CrOx thin-films for strain gauge is obtained a high resistivity, $\rho$=156.7$\mu$$\Omega$cm, a low temperature coefficiect of resistance, TCR=-86 ppm/$^{\circ}C$ and a high temporal stability with a good longitudinal, 15. The output sensitivity of pressure sensor obtained is 2.46㎷/V and the maximum non-linearity is 0.3%FS and hysteresis is less than 0.2%FS. The output characteristics of pressure transmitter obtained is 4~20㎃ and total accuracy is less than $\pm$0.5%FS. In those conclusions, CrOx thin film pressure sensors is quite satisfactory for many applications in industrial electronics.

  • PDF

The Effect of Hydrogen in the Nuclear Fuel Cladding on the Oxidation under High Temperature and High Pressure Steam (고압 수증기하 산화에서 핵연료 피복관내 수소효과 연구)

  • Jung, Yunmock;Jeong, Seonggi;Park, Kwangheon;Noh, Seonho
    • Journal of the Korean institute of surface engineering
    • /
    • v.47 no.1
    • /
    • pp.7-12
    • /
    • 2014
  • The characteristics of oxidation for the Zry-4 was measured in the $800^{\circ}C$ and high steam pressure (50 bar, 75 bar, 100 bar) conditions, using an apparatus for high pressure steam oxidation. The effect of accelerated oxidation by high-pressure steam was increased more than 60% in hydrogen-charged cladding than normal cladding. This difference between hydrogen charged claddings and normal claddings tends to be larger as the higher pressure. The accelerated oxidation effect of hydrogen charging cladding is regarded as the hydrogen on the metal layer affects the formation of the protective oxide layer. The creation of the sound monoclinic phase in Zry-4 oxidation influences reinforcement of corrosion-resistance of the oxide layer. The oxidation is estimated to be accelerated due to the creation of equiaxial type oxide film with lower corrosion resistance than that of columnar type oxide film. When tetragonal oxide film transformed into the monoclinic oxide film, surface energy of the new monoclinic phase reduced by hydrogen in the metal layer.