• 제목/요약/키워드: Pressure oscillations

검색결과 163건 처리시간 0.027초

곡면 벽을 지나는 고아음속 공동 유동에서 발생하는 압력 진동에 관한 연구 (A Study on the Pressure Oscillations in the High-Subsonic Cavity Flows over a Curved Wall)

  • 예아란;이익인;김정수;김희동
    • 한국추진공학회지
    • /
    • 제20권5호
    • /
    • pp.77-83
    • /
    • 2016
  • 종래, 직선벽상의 공동에서 발생하는 유동에 대한 많은 연구가 수행되어 왔다. 그러나 실제 공학적 응용에서 빈번하게 접하게 되는 곡선벽상의 공동 유동에 대한 연구는 찾아보기 드물다. 이러한 곡선 벽상에서는 강한 원심력의 효과가 발생하여 공동 유동에 영향을 미치게 되므로, 종래 직선 벽에서 발생하는 공동 유동과는 그 특성이 다를 것으로 예상되나, 이에 대한 구체적인 정보는 알려져 있지 않다. 본 연구에서는 유동의 마하수가 0.4에서 0.8까지의 고아음속 유동조건에서 곡선 벽 위의 공동 유동장을 수치해석적 방법으로 조사하였으며, 공동의 세장비(L/H)는 3.0으로 고정하였으나, 곡면의 곡률반경을 변화시켰다. 그 결과 곡선 벽의 공동에서 발생하는 압력진동이 직선 벽에 비하여 더 크며, 곡면의 곡률반경이 공동내부에서 발생하는 비정상 유동특성에 큰 영향을 미친다는 것을 알았다.

The Transient Response Characteristics of Compliant Coating to Pressure Fluctuations

  • Lee In-Won;Chun Ho-Hwan;Kim Jin
    • Journal of Mechanical Science and Technology
    • /
    • 제20권4호
    • /
    • pp.533-544
    • /
    • 2006
  • The amplitude and phase lag of surface deformation were determined for a compliant coating under the action of turbulent pressure fluctuations. For this purpose, pressure fluctuations were measured experimentally. The amplitude and duration of coherent wave train of pressure fluctuations were investigated using digital filtration. The transient response was calculated for stabilization of forced oscillations of the coating in approximation of local deformation. The response of coating was analyzed with considerations of its inertial properties and limited duration of coherent harmonics action of pressure fluctuations. It is shown that a compliant coating interacts not with the whole spectrum of pressure fluctuations, but only with a frequency range near the first resonance. According to the analysis, with increasing elasticity modulus of the coating material E, deformation amplitude decreases as 1/E, and dimensionless velocity of the coating surface decreases as $1/\sqrt{E}$. For sufficiently hard coatings, deformation amplitude becomes smaller than the thickness of viscous sublayer, while surface velocity remains comparable to vertical velocity fluctuations of the flow.

Combustion Instability Modeling for a Lean Premixed Gas Turbine Combustor using Flame Transfer Function Approach

  • Kim, Daesik;Cha, Dong-Jin
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2012년도 제45회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.53-54
    • /
    • 2012
  • In an IGCC plant, one of the most important issues on fuel flexibility in the lean premixed combustor is combustion instabilities. They are characterized by large amplitude pressure oscillations which are caused by unsteady heat release from the flames. The relationship between the unsteady heat release and flow oscillation can be qualitatively and quantitatively explained by flame transfer function. This paper introduces combustion instability modeling methods based on the flame transfer function approach.

  • PDF

내화금속 다이오드에서 전자기에너지 발전에 관한 연구 (Generation of Electromagnetic Energy in a Refractory Metal Thermionic Diode)

  • Lee, Deuk-Yong
    • 대한전기학회논문지
    • /
    • 제41권7호
    • /
    • pp.823-828
    • /
    • 1992
  • A thermionic energy converter test station is constructed for the study of electromagnetic energy generation. Of particular interest is the frequency variations due to changes in the interelectrode gap, the electrode temperature, and the cesium vapor pressure. It is found experimentally that the most intense ratio-frequency(rf) oscillations occur at two non-overlapping regions.

  • PDF

CANDU-6 열수송 계통의 유동 진동감쇠에 의한 유동안정성 연구 (An Investigation on Flow Stability with Damping of Flow Oscillations in CANDU-6 heat Transport System)

  • 김태한;심우건;한상구;정종식;김선철
    • 소음진동
    • /
    • 제6권2호
    • /
    • pp.163-177
    • /
    • 1996
  • An investigation on thermohydraulic stability of flow oscillations in the CANada Deuterium Uranium-600(CANDU-6) heat transport system has been conducted. Flow oscillations in reactor coolant loops, comprising two heat sources and two heat sinks in series, are possibly caused by the response of the pressure to extraction of fluid in two-phase region. This response consists of two contributions, one arising from mass and another from enthalpy change in the two-phase region. The system computer code used in the investigation os SOPHT, which is capable of simulating steady states as well as transients with varying boundary conditions. The model was derived by linearizing and solving one-dimensional, homogeneous single- and two-phase flow conservation equations. The mass, energy and momentum equations with boundary conditions are set up throughout the system in matrix form based on a node-link structure. Loop stability was studied under full power conditions with interconnecting the two compressible two phase regions in the figure-of-eight circuit. The dominant function of the interconnecting pipe is the transfer of mass between the two-phase regions. Parametric survey of loop stability characteristics, i. e., damping ratio and period, has been made as a function of geometrical parameters of the interconnection line such as diameter, length, height and orifice flow coefficient. The stability characteristics with interconnection line has been clarified to provide a simple criterion to be used as a guide in scaling of the pipe.

  • PDF

Diagnostics of nuclear reactor coolant pump in transition process on performance and vortex dynamics under station blackout accident

  • Ye, Daoxing;Lai, Xide;Luo, Yimin;Liu, Anlin
    • Nuclear Engineering and Technology
    • /
    • 제52권10호
    • /
    • pp.2183-2195
    • /
    • 2020
  • A mathematical model for the flowrate and rotation speed of RCP during idling was established. The numerical calculation method and dimensionless method were used to analyze the flow, head, torque and pressure and speed changes under idle conditions. Regularity, using the Q criterion vortex identification judgment method combined with surface flow spectrum morphology analysis to diagnose the vortex dynamic characteristics on RCP blade. On impeller blade, there is two oscillations in the pressure ratio on pressure surface in blade outlet region. The velocity on the suction surface is two times more oscillating than the inlet of blade, and there is an intersection with the velocity ratio curve on pressure surface. On blade of guide vane, the pressure ratio increases along the inlet to outlet direction, and the speed ratio decreases with the increase of idle time. There is a vortex that rotates counterclockwise on the suction surface, and the streamline on the suction surface of blade is subjected to the entrainment and blocking action of the vortex creates a large reverse flow in the main flow region. There are two vortices at the outlet of guide vane suction side and the vortices are in opposite directions.

Three-Dimensional Numerical Analysis for Detonation Propagating in Circular Tube

  • Sugiyama, Yuta;Matsuo, Akiko
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2008년 영문 학술대회
    • /
    • pp.364-370
    • /
    • 2008
  • Spinning detonations propagating in a circular tube were numerically investigated with a one-step irreversible reaction model governed by Arrhenius kinetics. The time evolution of the simulation results was utilized to reveal the propagation mechanism of single-headed spinning detonation. The track angle of soot record on the tube wall was numerically reproduced with various levels of activation energy, and the simulated unique angle was the same as that of the previous reports. The maximum pressure histories of the shock front on the tube wall showed stable and unstable pitch modes for the lower and higher activation energies, respectively. The shock front shapes and the pressure profiles on the tube wall clarified the mechanisms of two modes. The maximum pressure history in the stable pitch remained nearly constant, and the single Mach leg existing on the shock front rotated at a constant speed. The high and low frequency pressure oscillations appeared in the unstable pitch due to the generation and decay of complex Mach interaction on the shock front shape. The high frequency oscillation was self-induced because the intensity of the transverse wave was changed during propagation in one cycle. The high frequency behavior was not always the same for each cycle, and therefore the low frequency oscillation was also induced in the pressure history.

  • PDF

강내탄도의 점화기 해석 모델 개발 및 초기 점화 연구 (Development of Numerical Model for Igniter and Study on Initial Ignition of Interior Ballistics)

  • 성형건;장진성;최동환;노태성
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2011년도 제37회 추계학술대회논문집
    • /
    • pp.953-961
    • /
    • 2011
  • Lumped parameter model에 오리피스의 이론식을 결합하여 강내탄도의 점화기 해석 모델을 개발하였다. 이 개발된 점화기 해석 모델을 이용하여 점화기 형상인 길이, 직경, 주입구 분포에 따른 강내탄도의 특성을 분석하였다. 포미와 초기탄저의 압력차의 결과로서 점화기 길이는 저주파 진동에 영향을 미치는 것으로 나타났고, 점화제 주입구 직경과 주입구 분포는 고주파 진동에 영향을 주는것으로 나타났다.

  • PDF

Development of a Linear Stability Analysis Model for Vertical Boiling Channels Connecting with Unheated Risers

  • Hwang, Dae-Hyun;Yoo, Yeon-Jong;Zee, Seong-Quun
    • Nuclear Engineering and Technology
    • /
    • 제31권6호
    • /
    • pp.572-585
    • /
    • 1999
  • The characteristics of two-phase flow instability in a vertical boiling channel connecting with an unheated riser are investigated through the linear stability analysis model. Various two-phase flow models, including thermal non-equilibrium effects, are taken into account for establishing a physical model in the time domain. A classical approach to the frequency response method is adopted for the stability analysis by employing the D-partition method. The adequacy of the linear model is verified by evaluating experimental data at high quality conditions. It reveals that the flow-pattern-dependent drift velocity model enhances the prediction accuracy while the homogeneous equilibrium model shows the most conservative predictions. The characteristics of density wave oscillations under low-power and low-quality conditions are investigated by devising a simple model which accounts for the gravitational and frictional pressure losses along the channel. The necessary conditions for the occurrences of type-I instability and flow excursion are deduced from the one-dimensional D-partition analysis. The parametric effects of some design variables on low quality oscillations are also investigated.

  • PDF

초음속 노즐에서 발생하는 응축충격파의 피동제어 (Passive control of condensation shock wave in supersonic nozzles)

  • 김희동;권순범
    • 대한기계학회논문집B
    • /
    • 제20권12호
    • /
    • pp.3980-3990
    • /
    • 1996
  • When a moist air is rapidly expanded in a supersonic nozzle, nonequilibrium condensation occurs at a supersaturation state. Condensation shock wave appears in the nozzle flow if the releasing latent heat due to condensation goes beyond a critical value. It has been known that self-excited oscillations of the condensation shock wave generate in an air or a steam nozzle flow with a large humidity. In the present study, the passive control technique using porous wall with a cavity underneath was applied to the condensation shock wave. The effects of the passive control on the steady and self-excited condensation shock waves were experimentally investigated by Schlieren visualization and static pressure measurements. The result shows that the present passive control is a useful technique to suppress the self-excited oscillations of condensation shock wave.