• 제목/요약/키워드: Pressure loss

검색결과 2,166건 처리시간 0.034초

정적혼합기술 응용 열교환기의 압력손실 및 열전달 특성 (Pressure Loss and Heat Transfer Characteristics of Heat Exchanger Using Static Mixing Technology)

  • 박상규;양희천;전준철
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제30권1호
    • /
    • pp.65-72
    • /
    • 2006
  • Heat transfer augmentation in heat exchangers has received much attention in recent years, mainly due to energy efficiency and environmental considerations. Many active and Passive techniques are currently being employed in heat exchangers, with some inserts providing a cost-effective and efficient means of augmenting heat transfer. The Purpose of this paper is to determine the pressure loss and heat transfer characteristics of a heat exchanger using static mixing technology. Experimental measurements were taken on two set-ups: a single tube heat exchanger and a shell-tube heat exchanger with two static mixing inserts. It was concluded that the static mixing inserts resulted in an increase in the pressure loss and heat transfer characteristics as can be expected.

고주파 기판용 PTFE 복합체 형성 압력에 따른 유전 특성 (Dielectric Characteristics of Polytetrafluoroethylene-based Composites for Microwave Substrates with Formation Pressure)

  • 최홍제;전명표;조용수;조학래
    • 한국전기전자재료학회논문지
    • /
    • 제26권6호
    • /
    • pp.429-433
    • /
    • 2013
  • PTFE composites for use of microwave substrate were fabricated by impregnation and heat treatment fabrication with glass fabric. This study shows dielectric properties such as dielectric constant and loss can be controlled by thickness of PTFE composite with change of pressure condition in heating press process. The dielectric constant of the PTFE composites has decreasing tendency as given higher pressure condition. The dielectric loss has similar result too. Especially, the case of the dielectric loss was affected by the condition of pressure at heating press and had the best performance under 3 MPa. In order to see the reason why thickness conditions make different, their microstructures were also observed.

수직관내 유리알-물 유동의 압력손실 및 열전달 성능 (Pressure Loss and Heat Transfer Characteristics of the Glass Bead - Water Flow in a Vertical Tube)

  • 김내현;김정식;이윤표
    • 한국에너지공학회:학술대회논문집
    • /
    • 한국에너지공학회 1996년도 춘계학술발표회 초록집
    • /
    • pp.121-131
    • /
    • 1996
  • Recently, circulating liquid fluidized bed heat exchangers are widely used in a number of places - chemical, process, food concentration, waste water treatment facilities, etc. In a circulating heat exchanger, solid particles circulate with the liquid, thereby increase the heat transfer and reduce the fouling potential of the heat exchanger. In this study, glass beads were circulated through a vertical tube. The pressure loss and the heat transfer coefficient were measured. At low flow velocities, glass beads enhanced the heat transfer considerably. The enhancement increased as the volume fraction of the glass beads increased. It also increased as the particle diameter increased. The pressure loss showed a similar trend. From the observed particle behavior near tube wall, a possible explanation of the trend is provided.

  • PDF

익렬 통로 내의 2차유동 및 손실에 관한 실험 연구 (An experimental study on the secondary flow and losses in turbine cascades)

  • 정양범;신영호;김상현
    • 대한기계학회논문집B
    • /
    • 제22권1호
    • /
    • pp.12-24
    • /
    • 1998
  • The paper presents the mechanism of secondary flows and the associated total pressure losses occurring in turbine cascades with turning angle of about 127 and 77 degree. Velocity and pressure measurements are taken in seven traverse planes through the cascade passage using a prism type five hole probe. Oil-film flow visualization is also conducted on blade and endwall surfaces. The characteristics of the limiting streamlines show that the three dimensional separation is an important flow feature of endwall and blade surfaces. The larger turning results in much stronger contribution of the secondary flows to the loss developing mechanism. A large part of the endwall loss region at downstream pressure side is found to be very thin when compared to that of the cascade inlet and suction side endwall. Evolution of overall loss starts quite early within the cascade and the rate of the loss growth is much larger in the blade of large turning angle than in the blade of small turning angle.

차압식 유량계에서 점탄성유체의 유출 및 손실계수 (Discharge and loss coefficients for viscoelastic fluids in differential pressure flow meters)

  • 전우청;조병수;백병준;박복춘
    • 대한기계학회논문집B
    • /
    • 제20권4호
    • /
    • pp.1501-1509
    • /
    • 1996
  • Differential pressure devices such as an orifice and Venturi are widely used in the measurement of flow rate of fluid mainly due to cost effectiveness and easy installation. In the current study, the viscoelastic effect on discharge and loss coefficients of those flow meters were investigated experimentally. Aqueous solutions of Polyacrylamide (200, 500, and 800 ppm) as viscoelastic fluids were used. Discharge coefficient of an orifice for viscoelastic fluids increased significantly up to approximately 15-20% when compared with that for water, while loss coefficient decreased up to 10-25% depending on the diameter ratio, .betha.. Also, pressure recovery for viscoelastic fluids was extended much longer than that for water. On the other hand, discharge and loss coefficients of Venturi for viscoelastic fluids were found to be strongly dependent on the Reynolds number. In both flow meters, the concentration effect for discharge and loss coefficients was not observed at more over than 200 ppm of aqueous solution. Conclusively, orifice and Venturi flow meters should be calibrated very carefully in the flow rate measurement for viscoelastic fluids.

Effects of the Low Reynolds Number on the Loss Characteristics in a Transonic Axial Compressor

  • Choi, Min-Suk;Oh, Seong-Hwan;Ko, Han-Young;Baek, Je-Hyun
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2008년 영문 학술대회
    • /
    • pp.202-212
    • /
    • 2008
  • A three-dimensional computation was conducted to understand effects of the low Reynolds number on the loss characteristics in a transonic axial compressor, Rotor67. As a gas turbine becomes smaller in size and it is operated at high altitude, the operating condition frequently lies at low Reynolds number. It is generally known that wall boundary layers are thickened and a large separation occurs on the blade surface in axial turbomachinery as the Reynolds number decreases. In this study, it was found that the large viscosity did not affect on the bow shock at the leading edge but significantly did on the location and the intensity of the passage shock. The passage shock moved upstream towards leading edge and its intensity decreased at the low Reynolds number. This change had large effects on the performance as well as the internal flows such as the pressure distribution on the blade surface, tip leakage flow and separation. The total pressure rise and the adiabatic efficiency decreased about 3% individually at the same normalized mass flow rate at the low Reynolds number. In order to analyze this performance drop caused by the low Reynolds number, the total pressure loss was scrutinized through major loss categories such as profile loss, tip leakage loss, endwall loss and shock loss.

  • PDF

인플레이터 필터에 대한 압력손실계수 특성해석 연구 (A Study on Characteristics Analysis about Pressure Loss Coefficient for Inflator Filter)

  • 유일훈;김병우
    • 한국산학기술학회논문지
    • /
    • 제13권12호
    • /
    • pp.5696-5703
    • /
    • 2012
  • 본 연구는 자동차용 에어백 장치를 구성하고 있는 필터의 압력변화 특성을 해석하였다. 에어백 필터를 통한 압력 변화는 에어백을 부풀게 하는 기체의 압력에 직접적인 영향을 미친다. 그러나 현제 필터의 어느 설계인자가 압력변화에 얼마나 영향을 미치는지에 대한 정확한 기준이 불분명 하다. 또한 에어백 필터의 특성에서 압력 손실계수는 실험적 방법으로 평가하기에는 많은 어려움이 따른다. 이를 해결하기 위해서, 시뮬레이션 해석을 이용한 필터의 압력손실계수 해석방법을 제시하였다. 그러나, 일반적인 시뮬레이션 해석에서 에어백 필터와 같이 순간적으로 갑자기 증가하는 압력변화 해석은 불가능하다. 따라서, 보간법과 축척 축소방법을 적용하여 에어백 압력 변화 해석을 수행하였다. 또한, 에어백 필터의 압력손실계수에 대한 시뮬레이션 해석을 통하여 필터 설계에 대한 가이드 라인을 제시할 수 있었다.

파이로스타터용 필터 압력손실계수 측정 (Pressure loss coefficient measurements of pyrostarter filters)

  • 홍문근
    • 항공우주기술
    • /
    • 제6권2호
    • /
    • pp.126-133
    • /
    • 2007
  • 유공압 설비 설계에 있어서 중요한 요소인 유공압 구성품의 압력손실계수를 측정하기 위한 시험 설비의 설계, 제작 그리고 일련의 시험 내용 및 PS(Pyrostarter, 고체추진제 가스발생기) 연소시험 결과와의 비교 분석 내용을 정리한다. 최종적으로 blow-down 시스템을 이용하여 간단한 시험 설비를 구축하였으며 PS에 사용되는 필터들의 압력손실계수를 측정하였다. 시험 설비를 통해 PS의 CQSF 압력손실계수 K를 획득하였으며, PS 연소시험 결과와의 비교를 통해 2% 내외의 높은 신뢰도의 압력 손실 예측이 가능한 것으로 나타났다. 한편 PS 필터의 K와 PS 연소압과의 관계를 유도하여 PS 연소시험 결과와 일치함을 보였으며, 향후 PS 개발에서 필터의 K를 활용하여 PS 추진제의 연소속도를 향상시킬 수 있을 것으로 기대된다.

  • PDF

수치계산에 의한 축류터보기계의 회전차 익말단의 누설손실과 효율저하에 대한 평가 (Evaluation of Tip Leakage Loss and Reduction of Efficiency of Axial Turbomachinery Using Numerical Calculation)

  • 노수혁;조강래
    • 한국유체기계학회 논문집
    • /
    • 제2권1호
    • /
    • pp.73-80
    • /
    • 1999
  • Leakage vortices formed new blade tip causes an increase of total pressure loss near the casing endwall region and as a result, the efficiency of rotor decreases. The reduction of rotor efficiency is related to the size of the tip clearance. In this study, the three-dimensional flowfields in an axial flow rotor were calculated by varying the tip clearance under various flow rates, and the numerical results were compared with experimental ones. The effects of tip clearance and attack angle on the leakage vortex and overall performance, and the loss distributions were investigated through numerical calculations. In this study, tip leakage flow rate and total pressure loss by tip clearance were evaluated using numerical results and approximate equations were presented to evaluate the reduction of rotor efficiency by tip leakage flow.

  • PDF

냉각채널의 각도와 직경 변화에 따른 채널 내 압력 손실에 관한 수치적 연구 (Numerical Study on the Pressure Loss for Various Angles and Diameters of Cooling Channel)

  • 박진;이현섭;김홍집;안규복
    • 한국추진공학회지
    • /
    • 제22권2호
    • /
    • pp.87-95
    • /
    • 2018
  • 냉각채널에서의 압력 손실을 수치적으로 연구하기 위하여 채널의 축 방향에 대한 각도, 채널 내부의 유체의 유속, 채널의 직경을 변화시키며 수치해석을 진행하였다. 채널의 축 방향에 대한 각도 변화에 따라서 압력 손실은 큰 변화가 없었다. 하지만 일반적으로 알려진 대로 채널의 직경이 커지면 압력손실이 감소하고, 유체의 유속이 느려지면 압력손실이 감소하는 경향은 두드러지게 나타났다. 이러한 결과는 무차원화 하여 정량화하였고, 기존 채널내부의 압력손실에 대한 경험식과 비교하여 기존 경험식의 타당성을 확인하였다. 본 연구에서 획득한 정보는 향후 냉각채널을 설계할 때 압력손실을 고려함에 있어 도움이 될 것으로 판단된다.