• Title/Summary/Keyword: Pressure gradient

Search Result 868, Processing Time 0.031 seconds

Numerical simulation of single-phase two-components flow in naturally fractured oil reservoirs

  • Debossam, Joao Gabriel Souza;dos Santos Heringer, Juan Diego;de Souza, Grazione;Souto, Helio Pedro Amaral
    • Coupled systems mechanics
    • /
    • v.8 no.2
    • /
    • pp.129-146
    • /
    • 2019
  • The main goal of this work is to develop a numerical simulator to study an isothermal single-phase two-component flow in a naturally fractured oil reservoir, taking into account advection and diffusion effects. We use the Peng-Robinson equation of state with a volume translation to evaluate the properties of the components, and the discretization of the governing partial differential equations is carried out using the Finite Difference Method, along with implicit and first-order upwind schemes. This process leads to a coupled non-linear algebraic system for the unknowns pressure and molar fractions. After a linearization and the use of an operator splitting, the Conjugate Gradient and Bi-conjugated Gradient Stabilized methods are then used to solve two algebraic subsystems, one for the pressure and another for the molar fraction. We studied the effects of fractures in both the flow field and mass transport, as well as in computing time, and the results show that the fractures affect, as expected, the flow creating a thin preferential path for the mass transport.

Indirect Inspection Signal Diagnosis of Buried Pipe Coating Flaws Using Deep Learning Algorithm (딥러닝 알고리즘을 이용한 매설 배관 피복 결함의 간접 검사 신호 진단에 관한 연구)

  • Sang Jin Cho;Young-Jin Oh;Soo Young Shin
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.19 no.2
    • /
    • pp.93-101
    • /
    • 2023
  • In this study, a deep learning algorithm was used to diagnose electric potential signals obtained through CIPS and DCVG, used indirect inspection methods to confirm the soundness of buried pipes. The deep learning algorithm consisted of CNN(Convolutional Neural Network) model for diagnosing the electric potential signal and Grad CAM(Gradient-weighted Class Activation Mapping) for showing the flaw prediction point. The CNN model for diagnosing electric potential signals classifies input data as normal/abnormal according to the presence or absence of flaw in the buried pipe, and for abnormal data, Grad CAM generates a heat map that visualizes the flaw prediction part of the buried pipe. The CIPS/DCVG signal and piping layout obtained from the 3D finite element model were used as input data for learning the CNN. The trained CNN classified the normal/abnormal data with 93% accuracy, and the Grad-CAM predicted flaws point with an average error of 2m. As a result, it confirmed that the electric potential signal of buried pipe can be diagnosed using a CNN-based deep learning algorithm.

Rational and efficient approach to the preparation of the active fractions of Scutellaria baicalensis (황금(Scutellaria baicalensis) 유효분획물 제조의 합리적이고 효율적인 접근방법)

  • Kim, Doo-Young;Kim, Won Jun;Kim, Jung-Hee;Oh, Sei-Ryang;Ryu, Hyung Won
    • Journal of Applied Biological Chemistry
    • /
    • v.62 no.1
    • /
    • pp.31-38
    • /
    • 2019
  • Scutellaria baicalensis Georgi (Scutellariae Radix) has been widely used as a dietary ingredient and traditional herbal medicine such as diuretic, hyperlipidemia, antibacterial, anti-allergy, anti-inflammatory and anticancer properties. In this study, the isolation of biomarkers or bioactive compounds from complex S. baicalensis extracts represents an essential step for de novo identification and bioactivity assessment. The bioactive fraction consisted of eight compounds which was chromatographed on an analytical high performance liquid chromatography column using two different gradient runs. A simulative replacement of the analytical column with a medium pressure liquid chromatography and open column allowed the determination of gradient profile to allow sufficient separation in the preparative scale. From the optimized method, eight standard compounds have been identified in the fractions. In addition, MS, UV, HRMS detection was provided by ultraperformance liquid chromatographyequadrupole time-of-flight mass spectrometry (UPLC-QTof-MS) of all fractions. Therefore, this scale up procedure was successfully applied to a S. baicalensis extract.

Seepage Behaviors on the Box Culvert Side of Enlarged Levee (하천 보축제체의 배수통문 구조물 측면부 침투 특성)

  • Yang, Hakyoung;Kim, Youngmuk
    • Journal of the Korean GEO-environmental Society
    • /
    • v.21 no.4
    • /
    • pp.19-30
    • /
    • 2020
  • This numerical study is to investigate the seepage characteristics of the side of the structure in the event of leakage from the structural connection part of the drainage structure installed through the enlarged levee, and to analyze the effect of piping on the stabilization of the levee by the lateral penetration behavior. To take into account lateral seepage behavior, 2D and 3D numerical analyses were performed on the same model, and the effect of lateral seepage was analyzed to assess the validity of the numerical analysis. As a result, when leakage occurs and a lateral seepage is considered with the gate located on the riverside land, the maximum pore water pressure near the leakage point of the structure has been reduced by half compared to the normal seepage state where no leakage occurred. Excessive variation in the pore pressure was shown at the lower part of the structure, especially if lateral seepage is not considered. As a water level rises to the high water level, it shows the hydraulic gradient was larger than the critical hydraulic gradient, which will be vulnerable to long-term piping. If a gate is located in the inland and side seepage is not considered, the effect of the seepage water such as hydraulic gradient and seepage velocity is underestimated compared with the case of considering side seepage. The maximum hydraulic gradient is relatively small when lateral seepage is neglected if a gate is located in the riverside land and there was might be a risk of piping or loss of material. In addition, the period exceeding the critical hydraulic gradient was interpreted as a short time zone. As a result, it is considered that the possibility of piping can be underestimated if side seepage is ignored.

Expansion of Dusty H II Regions and Its Impact on Disruption of Molecular Clouds

  • Kim, Jeong-Gyu;Kim, Woong-Tae;Ostriker, Eve
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.58.3-59
    • /
    • 2015
  • Dynamical expansion of H II regions plays a key role in dispersing surrounding gas and therefore in limiting the efficiency of star formation in molecular clouds. We use analytic methods and numerical simulations to explore expansions of spherical dusty H II regions, taking into account the effects of direct radiation pressure, gas pressure, and total gravity of the gas and stars. Simulations show that the structure of the ionized zone closely follows Draine (2011)'s static equilibrium model in which radiation pressure acting on gas and dust grains balances the gas pressure gradient. Strong radiation pressure creates a central cavity and a compressed shell at the ionized boundary. We analytically solve for the temporal evolution of a thin shell, finding a good agreement with the numerical experiments. We estimate the minimum star formation efficiency required for a cloud of given mass and size to be destroyed by an HII region expansion. We find that typical giant molecular clouds in the Milky Way can be destroyed by the gas-pressure driven expansion of an H II region, requiring an efficiency of less than a few percent. On the other hand, more dense cluster-forming clouds in starburst environments can be destroyed by the radiation pressure driven expansion, with an efficiency of more than ~30 percent that increases with the mean surface density, independent of the total (gas+stars) mass. The time scale of the expansion is always smaller than the dynamical time scale of the cloud, suggesting that H II regions are likely to be a dominant feedback process in protoclusters before supernova explosions occurs.

  • PDF

A Study on the Measuring about the Coefficient of Earth Pressure at Rest 1 (정지토압계수 측정에 관한 연구 1)

  • 송무효
    • Journal of Ocean Engineering and Technology
    • /
    • v.15 no.4
    • /
    • pp.92-100
    • /
    • 2001
  • It is very important to determine the coefficient of earth pressure at rest accurately in order to estimate the behavior of soil structure. For estimation of K/sub 0/-value depending upon the stress history of dry sand, a new type of K/sub 0/-oedeometer apparatus is devised, and the horizontal earth pressure is accurately measured. For this study, 2 types of one-cyclic K/sub 0/-Loading/unloading models have been studied experimentally using four relative densities of the sand. The results obtained in this test are as follows : K/sub on'/ the coefficient of earth pressure at - rest for virgin loading is a function of the angle of internal friction Φ' of the sand and is determined as K/sub on/=1 - 0.914 sin Φ', K/sub ou'/ the coefficient of earth pressure at rest for virgin unloading is a function of K/sub on/ and over consolidation ratio(OCR), and is determined as K/sub ou/=K/sub on/(OCR)K/sup a/. The exponent α, increases as the relative density increases. K/sub or'/ the coefficient of earth pressure at rest for virgin reloading decreases in hyperbola type as the vertical stress, σ/sub v/’, increases. And, the stress path at virgin reloading leads to the maximum prestress point, independent upon the value of the minimum unloading stress. The gradient of this curve, m/sub r/ increases as OCR increases.

  • PDF

A Study on the Use of Momentum Interpolation Method for Flows with a Large Body Force (바디포오스가 큰 유동에서 운동량보간법의 사용에 관한 연구)

  • Choi Seok-Ki;Kim Seong-O;Choi Hoon-Ki
    • Journal of computational fluids engineering
    • /
    • v.7 no.2
    • /
    • pp.8-16
    • /
    • 2002
  • A numerical study on the use of the momentum interpolation method for flows with a large body force is presented. The inherent problems of the momentum interpolation method are discussed first. The origins of problems of the momentum interpolation methods are the validity of linear assumptions employed for the evaluation of the cell-face velocities, the enforcement of mass conservation for the cell-centered velocities and the specification of pressure and pressure correction at the boundary. Numerical experiments are performed for a typical flow involving a large body force. The numerical results are compared with those by the staggered grid method. The fact that the momentum interpolation method may result in physically unrealistic solutions is demonstrated. Numerical experiments changing the numerical grid have shown that a simple way of removing the physically unrealistic solution is a proper grid refinement where there is a large pressure gradient. An effective way of specifying the pressure and pressure correction at the boundary by a local mass conservation near the boundary is proposed, and it is shown that this method can effectively remove the inherent problem of the specification of pressure and pressure correction at the boundary when one uses the momentum interpolation method.

Shear infiltration and constant water content tests on unsaturated soils

  • Rasool, Ali Murtaza;Aziz, Mubashir
    • Geomechanics and Engineering
    • /
    • v.19 no.5
    • /
    • pp.435-445
    • /
    • 2019
  • A series of element tests with different drainage conditions and strain rates were performed on compacted unsaturated non-plastic silt in unconfined conditions. Soil samples were compacted at water contents from dry to wet of optimum with the degree of saturation varying from 24 to 59.5% while maintaining the degree of compaction at 80%. The tests performed were shear infiltration tests in which specimens had constant net confining pressure, pore air pressure was kept drained and constant, just before the shear process pore water pressure was increased (and kept constant afterwards) to decrease matric suction and to start water infiltration. In constant water content tests, specimens had constant net confining pressure, pore air pressure was kept drained and constant whereas pore water pressure was kept undrained. As a result, the matric suction varied with increase in axial strain throughout the shearing process. In both cases, maximum shear strength was obtained for specimens prepared on dry side of optimum moisture content. Moreover, the gradient of stress path was not affected under different strain rates whereas the intercept of failure was changed due to the drainage conditions implied in this study.

A Numerical Study on Effect of Radiative Heat Loss on Extinction of Hydrogen Diffusion Flames at High Pressure (고압하에서 수소 확산화염의 소염에 미치는 복사 열손실 효과에 관한 수치적 연구)

  • Oh, Tae-Kyun;Sohn, Chae-Hoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.5
    • /
    • pp.351-358
    • /
    • 2008
  • Extinction characteristics of hydrogen-air diffusion flames at various pressures are investigated numerically by adopting counterflow flame configuration as a model flamelet. Especially, effect of radiative heat loss on flame extinction is emphasized. Only gas-phase radiation is considered here and it is assumed that $H_2O$ is the only radiating species. Radiation term depends on flame thickness, temperature, $H_2O$ concentration, and pressure. From the calculated flame structures at various pressures, flame thickness decreases with pressure, but its gradient decreases at high pressure. Flame temperature and mole fraction of $H_2O$ increase slightly with pressure. Accordingly, as pressure increases, radiative heat loss becomes dominant. When radiative heat loss is considered, radiation-induced extinction is observed at low strain rate in addition to transport-induced extinction. As pressure increases, flammable region, where flame is sustained, shifts to the high-temperature region and then, shrunk to the point on the coordinate plane of flame temperature and strain rate. The present numerical results show that radiative heat loss can reduce the operating range of a combustor significantly.

Measurement of effective thermal conductivity and permeability on aluminum foam metal (알루미늄 발포금속의 유효열전도도와 침투율의 측정)

  • 백진욱;강병하;김서영;현재민
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.2
    • /
    • pp.185-192
    • /
    • 1999
  • Effective thermal conductivities and pressure-drop-related properties of aluminum foam metals have been measured. The effects of porosity and cell size in the aluminum foam metal are investigated in detail. The porosity of the foam metal, considered in the present study, varies from 0.89 to 0.96 and the cell size from 0.65㎜ to 2.5㎜. The effective thermal conductivity is evaluated by comparing the temperature gradient of the foam metal with that of the thermal conductivity-known material. The pressure drop in the foam metal is measured by a highly precise electric manometer while air is flowing through the aluminum foam metal in the channel. The results obtained indicate that the effective thermal conductivities are found to be increased with a decrease in the porosity while the effective thermal conductivities ire little affected by the cell size at a fixed porosity. However, the pressure drop is strongly affected by the cell size as well as the porosity. It is seen that the pressure drop is increased as the cell size becomes smaller, as expected. The minimum pressure drop is obtained in the porosity 0.94 at a fixed cell size. A new correlation of the pressure drop is proposed based on the permeability and Ergun's coefficient for the aluminum foam metal.

  • PDF