• Title/Summary/Keyword: Pressure generator

Search Result 674, Processing Time 0.028 seconds

Techno-Economic Analysis of Reversible Solid Oxide Fuel Cell System Couple with Waste Steam (폐스팀을 이용한 가역 고체산화물 연료전지의 기술적 경제적 해석)

  • GIAP, VAN-TIEN;LEE, YOUNG DUK;KIM, YOUNG SANG;AHN, KOOK YOUNG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.30 no.1
    • /
    • pp.21-28
    • /
    • 2019
  • Reversible solid oxide fuel cell (ReSOC) system was integrated with waste steam for electrical energy storage in distributed energy storage application. Waste steam was utilized as external heat in SOEC mode for higher hydrogen production efficiency. Three system configurations were analyzed to evaluate techno-economic performance. The first system is a simple configuration to minimize the cost of balance of plant. The second system is the more complicated configuration with heat recovery steam generator (HRSG). The third system is featured with HRSG and fuel recirculation by blower. Lumped models were used for system performance analyses. The ReSOC stack was characterized by applying area specific resistance value at fixed operating pressure and temperature. In economical assessment, the levelized costs of energy storage (LCOS) were calculated for three system configurations based on capital investment. The system lifetime was assumed 20 years with ReSOC stack replaced every 5 years, inflation rate of 2%, and capacity factor of 80%. The results showed that the exergy round-trip efficiency of system 1, 2, 3 were 47.9%, 48.8%, and 52.8% respectively. The high round-trip efficiency of third system compared to others is attributed to the remarkable reduction in steam requirement and hydrogen compression power owning to fuel recirculation. The result from economic calculation showed that the LCOS values of system 1, 2, 3 were 3.46 ¢/kWh, 3.43 ¢/kWh, and 3.14 ¢/kWh, respectively. Even though the systems 2 and 3 have expensive HRSG, they showed higher round-trip efficiencies and significant reduction in boiler and hydrogen compressor cost.

Development Status of Technology Demonstration Model for Staged Combustion Cycle Engine (다단연소사이클 엔진 기술검증시제 개발 현황)

  • Kim, Chaehyoung;Lee, Jungho;Woo, Seongphil;So, Younseok;Yi, SeungJae;Lee, Kwang-Jin;Cho, Namkyung;Han, Yeoungmin;Kim, Jin-han
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.4
    • /
    • pp.104-111
    • /
    • 2019
  • Staged combustion cycle engines exhibit higher combustion performance compared with open cycle engines with a gas generator. An advanced research of the staged combustion cycle engine is going on for the next program following the KSLV-II program. Various experiments have been carried out for the technology demonstration model, TDM0A and TDM0B. The experiments on the combustion performance are aimed to understand the engine start condition and combustion characteristics. They also aim to develop the oxidizer-rich pre-burner and the combustor of the staged combustion cycle engine. The engine-shaped model, TDM1A is fabricated based on the experimental data. The combustion experiment of the TDM1A shows that the combustion pressure of the combustor is approximately 91 bar and the turbine rotation is approximately 28,00 rpm. The result is stable and satisfies the development requirements. The present paper reports on the development process and characteristics of engine models from TDM0A to TDM1A.

Turbine Efficiency Measurement of Pulsating Flow in a Twin Scroll Turbocharger (맥동 유동이 있는 트윈 스크롤 터보과급기의 터빈 효율 측정)

  • Chung, Jin-Eun;Jeon, Se-Hun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.2
    • /
    • pp.386-391
    • /
    • 2021
  • Turbocharging is becoming a key technology for both diesel and gasoline engines. Regarding gasoline engines, turbocharging can help reduce carbon dioxide (CO2) emissions when used in conjunction with other technologies. This paper presents measurements of the turbine efficiency of pulsating flow in a twin-scroll turbocharger for gasoline engines. A cold gas test bench with a pulse generator was manufactured. The turbine efficiencies were calculated using the measured data of the instantaneous pressure and temperature of the inlet and exit of the turbine. The measurements were carried out at turbine speeds from 60,000 to 100,000 rpm under a pulsating flow of 25.0 Hz and 33.0 Hz. The turbine efficiencies ranged from 0.517 to 0.544. At the pulse frequency, 33.3 Hz, the variations in efficiency were 7.7% and 2.6% at turbine speeds of 60,000 rpm and 100,000 rpm, respectively. The turbine efficiency of the pulsating flow compared to those of steady flow was 7.0% and 3.0% lower at a turbine speed of 60,000 rpm and 100,000 rpm, respectively. The pulsating flow deteriorated the turbine efficiency, but the effects of pulsating flow decreased with increasing turbine speed.

Recent Progress in Air-Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2012 (설비공학 분야의 최근 연구 동향 : 2012년 학회지 논문에 대한 종합적 고찰)

  • Han, Hwataik;Lee, Dae-Young;Kim, Sa Ryang;Kim, Hyun-Jung;Choi, Jong Min;Park, Jun-Seok;Kim, Sumin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.6
    • /
    • pp.346-361
    • /
    • 2013
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2012. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. The conclusions are as follows : (1) The research works on thermal and fluid engineering have been reviewed as groups of fluid machinery, pipes and valves, fuel cells and power plants, ground-coupled heat pumps, and general heat and mass transfer systems. Research issues are mainly focused on new and renewable energy systems, such as fuel cells, ocean thermal energy conversion power plants, and ground-coupled heat pump systems. (2) Research works on the heat transfer area have been reviewed in the categories of heat transfer characteristics, pool boiling and condensing heat transfer, and industrial heat exchangers. Researches on heat transfer characteristics included the results for natural convection in a square enclosure with two hot circular cylinders, non-uniform grooved tube considering tube expansion, single-tube annular baffle system, broadcasting LED light with ion wind generator, mechanical property and microstructure of SA213 P92 boiler pipe steel, and flat plate using multiple tripping wires. In the area of pool boiling and condensing heat transfer, researches on the design of a micro-channel heat exchanger for a heat pump, numerical simulation of a heat pump evaporator considering the pressure drop in the distributor and capillary tubes, critical heat flux on a thermoexcel-E enhanced surface, and the performance of a fin-and-tube condenser with non-uniform air distribution and different tube types were actively carried out. In the area of industrial heat exchangers, researches on a plate heat exchanger type dehumidifier, fin-tube heat exchanger, an electric circuit transient analogy model in a vertical closed loop ground heat exchanger, heat transfer characteristics of a double skin window for plant factory, a regenerative heat exchanger depending on its porous structure, and various types of plate heat exchangers were performed. (3) In the field of refrigeration, various studies were executed to improve refrigeration system performance, and to evaluate the applicability of alternative refrigerants and new components. Various topics were presented in the area of refrigeration cycle. Research issues mainly focused on the enhancement of the system performance. In the alternative refrigerant area, studies on CO2, R32/R152a mixture, and R1234yf were performed. Studies on the design and performance analysis of various compressors and evaporator were executed. (4) In building mechanical system research fields, twenty-nine studies were conducted to achieve effective design of mechanical systems, and also to maximize the energy efficiency of buildings. The topics of the studies included heating and cooling, HVAC system, ventilation, renewable energy systems, and lighting systems in buildings. New designs and performance tests using numerical methods and experiments provide useful information and key data, which can improve the energy efficiency of buildings. (5) In the fields of the architectural environment, studies for various purposes, such as indoor environment, building energy, and renewable energy were performed. In particular, building energy-related researches and renewable energy systems have been mainly studied, reflecting interests in global climate change, and efforts to reduce building energy consumption by government and architectural specialists. In addition, many researches have been conducted regarding indoor environments.