• Title/Summary/Keyword: Pressure field

Search Result 3,762, Processing Time 0.029 seconds

The Influence of the Diffuser Divergence Angle on the Critical Pressure of a Critical Nozzle (디퓨저 확대각이 임계노즐의 임계압력비에 미치는 영향)

  • Kim Jae Hyung;Kim Heuy Dong;Park Kyung Am
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.131-134
    • /
    • 2002
  • Compressible gas flow through a convergent-divergent nozzle is choked at the nozzle throat under a certain critical pressure ratio, and then being no longer dependent on the pressure change in the downstream flow field. In practical, the flow field at the divergent part of the critical nozzle can affect the effective critical pressure ratio. In order to investigate details of flow field through a critical nozzle, the present study solves the axisymmetric, compressible, Wavier-Stokes equations. The diameter of the nozzle throat is D=8.26mm and the half angle of the diffuser is changed between $2^{\circ}\;and\;10^{\circ}$ Computational results are compared with the previous experimental ones. The results obtained show that the divergence angle is significantly influences the critical pressure ratio and the present computations predict the experimented discharge coefficient and critical pressure ratio with a good accuracy. It is also found that a nozzle with the half angle of $4^{\circ}$ nearly predicts the theoretical critical pressure ratio.

  • PDF

Dynamic Responses of Electrorheological Fluid in Steady Pressure Flow (정상압력 유동 하에서 전기유변유체의 동적 응답)

  • Nam, Yun-Joo;Park, Myeong-Kwan
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2879-2884
    • /
    • 2007
  • Dynamic responses of electrorheological (ER) fluids in steady pressure flow to stepwise electric field excitations are investigated experimentally. The transient periods under various applied electric fields and flow velocities were determined from the pressure behavior of the ER fluid in the flow channel with two parallel-plate electrodes. The pressure response times were exponentially decreased with the increase of the flow velocity, but increased with the increase of the applied electric field strength. In order to investigate the cluster structure formation of the ER particles, it was verified using the flow visualization technique that the transient response of ER fluids in the flow mode is assigned to the densification process in the competition of the electric field-induced particle attractive interaction forces and the hydrodynamic forces, unlike that in the shear mode determined by the aggregation process.

  • PDF

Numerical Analysis for the Flow Field past a Two-Staged Conical Orifice (이단 원추형 오리피스를 지니는 유동장에 대한 수치해석)

  • Kim, Yeon-Soo;Kim, You-Gon
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.499-505
    • /
    • 2001
  • The objective of the paper was to measure the pressure drop and to investigate the recirculation region of the conical orifices used in Kwang-yang Iron & Steel Company. The flow field with water used as a working fluid was the turbulent flow for Reynolds number of $2{\times}10^4$. The effective parameters for the pressure drop and the recirculation region were the conical orifice's inclined angle (${\theta}$) against the wall, the interval(L) between orifices, the relative angle of rotation(${\alpha}$) of the orifices, the shape of the orifice's hole(circle, rectangle, triangle) having the same area. It was found that the shape of the orifice's hole affected the pressure drop and the flow field a lot, But the other parameters did not make much differences to the pressure drop. The PISO algorithm with FLUENT code was employed.

  • PDF

Flow Analysis of Cryogenic Check Valve for LNG (냉열발전을 위한 극저온 체크밸브의 유동해석)

  • Moon, Jung-Hyun
    • Journal of Power System Engineering
    • /
    • v.20 no.1
    • /
    • pp.5-10
    • /
    • 2016
  • Swing check valve is opened when the flow direction is forward, when the flow is reversed, the valve is automatically closed by back pressure. In this study, the internal flow field analysis of the valve was conducted by Fluent. The working fluid used in the study, using liquefied methane $-165^{\circ}C$ (CH4) and velocity field, pressure field, pressure drop coefficient were simulated by varying separately the opening divergence into four intervals from 0 to 100%. The approximate research result are as follow : When the opening divergence is smaller, it appears high pressure on the upstream side, this value is relaxed when the opening divergence is large. Flow rate coefficient of the valve shows a larger value as the degree of opening becomes larger, confirming that the check valve used in the study is in the effective flow rate counting range.

Pressure Measurement Using Field Electron Emission Phenomena

  • Cho, Boklae
    • Applied Science and Convergence Technology
    • /
    • v.23 no.2
    • /
    • pp.83-89
    • /
    • 2014
  • Adsorption of residual gas molecules damped the emission current of a W (310) field electron emission (FE) emitter. The damping speed was linearly proportional to the pressure gauge readings at pressure ranging from ${\sim}10^{-8}Pa$ to ${\sim}10^{-9}Pa$, and the proportionality constant was employed to measure pressure in the $10^{-10}Pa$ range. A time plot of FE current revealed the existence of an "initial stable region" after the flash heating of W(310) FE, during which the FE current damps very slowly. The presence of non-hydrogen gas removed this region from the plot, supplying a means of qualitatively analysing the gas species.

Deep polarization observations of a ram pressure stripped galaxy, NGC 4522

  • Choi, Woorak;Chung, Aeree;Kim, Chang-goo;Lee, Bumhyun
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.45 no.1
    • /
    • pp.65.1-65.1
    • /
    • 2020
  • We present high-resolution, high-sensitivity continuum data of NGC 4522 observed at 3 cm (X-band) and 10 cm (S-band) in full polarization mode using the JVLA. This observation has 2 - 4 times better spatial resolution and 2 - 5 times better sensitivity compared to previous continuum observations. NGC 4522 is a Virgo spiral galaxy undergoing active ram pressure stripping. This galaxy is particularly well known for the CO emission detected outside its stellar disk, some of which coincides with the extraplanar HI gas and Halpha patches. The major goal of our JVLA observation is to leverage our understanding of the influence of the ram pressure on the general ISM field and multi-phase medium. By combining our new deep radio continuum data and previous observations, we will investigate how the B-field properties can be affected by the ram pressure, and what roles the B-field plays in the stripping process of the multi-phased ISM and in the star formation activity when the ram pressure is present.

  • PDF

Comparison between CFD Analysis and Experiments According to Various PEMFC Flow-field Designs

  • Lee, Kang-In;Lee, Se-Won;Park, Min-Soo;Cho, Yong-Hun;Cho, Yoon-Hwan;Chu, Chong-Nam;Sung, Yung-Eun
    • Journal of the Korean Electrochemical Society
    • /
    • v.12 no.1
    • /
    • pp.61-67
    • /
    • 2009
  • Flow-field design has much influence over the performance of proton exchange membrane fuel cell (PEMFC) because it affects the pressure magnitude and distribution of the reactant gases. To obtain the pressure magnitude and distribution of reactant gases in five kinds of flow-field designs, computational fluid dynamics (CFD) analysis was performed. After the CFD analysis, a single cell test was carried out to obtain the performance values. As expected, the pressure differences due to different flow-field configurations were related to the PEMFC performance because the actual performance results showed the same tendency as the results of the CFD analysis. A large pressure drop resulted in high PEMFC performance. The single serpentine configuration gave the highest performance because of the high pressure difference magnitudes of the inlet/outlet. On the other hand, the parallel flow-field configuration gave the lowest performance because the pressure difference between inlet and outlet was the lowest.

Experimental Study on the Behavior of Stall Cell in an Axial Flow Fan (축류송풍기의 실속셀 거동에 관한 실험적 연구)

  • Shin You Hwan;Kim Kwang Ho;Kang Chang Sik
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.643-646
    • /
    • 2002
  • Experimental study was conducted to reveal the flow mechanism under rotating stall in an axial flow fan. For this study unsteady pressure was measured using high frequency pressure transducers mounted on the casing wall of rotor passage and total pressure fields were measured at the rotor upstream and downstream. The measured pressure signal was analyzed by Wavelet Transform and Double Phase Locked Averaging Technique. From the result of unsteady pressure field of the casing wall, one period of rotating stall was divided into three zones and the flow characteristics on each zone were described in detail. The pressure field was also analyzed in terms of the pressure distribution along pressure side and suction side of blade tip. From the result of total pressure fields at inlet and outlet of the rotor, the useful information on the characteristics of the stall cell in radial direction was provided.

  • PDF

Temperature, Electric Field, Pressure Dependency and Dielectric properties on the interface between XLPE and EPDM (XLPE와 EPDM의 계면에 따른 유전특성과 온도, 전계, 압력의존성)

  • 김동식;박대희
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.11a
    • /
    • pp.109-111
    • /
    • 1997
  • In this paper, we have evaluated temperature, electric field, Pressure dependency and dielectric properties of EPDM XLPE and EPDM/XLPE\`s interface. Temperature dependency of EPDM had great influence with dielectric properties, but pressure and applied voltage of EPDM had no effect on dielectric properties. Dielectric properties of XLPE were influenced by not only temperature but also pressure and applied voltage. We knowed that dielectric properties of EPDM/XLPE were trended toward tendency of those of EPDM

  • PDF

Field Experiment on Influence of Stack Effect to Pressure Differential System for Smoke Control (연돌효과가 급기가압 제연시스템에 미치는 영향에 대한 현장실험)

  • Kim, Jung-Yup
    • Fire Science and Engineering
    • /
    • v.22 no.3
    • /
    • pp.194-200
    • /
    • 2008
  • In order to design and operate successfully the pressure differential system for smoke control which uses difference of pressure between compartments of building, architectural factors affecting the pressure field of building should be examined and the stack effect is one of the important factors. The field experiments on pressure field in two buildings of 21 stories and 31 stories in summer and winter season with regard to on/off condition of the pressure differential system are carried out to evaluate the influence of stack effect to evacuation and smoke management of high-rise building. In winter season when the stack effect increases, as the pressure differential system starts to operate, the pressure in upper stair rises largely due to the combination effect of the air infiltration from lobby to stair and the stack effect.