• 제목/요약/키워드: Pressure drainage

검색결과 308건 처리시간 0.023초

비탈면 보강재의 매설각에 따른 지하수위 저감효과 분석 (Analysis of Groundwater Level Reduction Effects to Burial Angle of Slope Reinforcement Materials)

  • 윤현준;이성열;백원진;강재모;김진영;고화빈
    • 한국지반환경공학회 논문집
    • /
    • 제24권8호
    • /
    • pp.5-11
    • /
    • 2023
  • 최근 이상기후로 인한 집중호우가 빈번히 발생함에 따라 비탈면의 표층 유실 및 간극수압의 증가로 인한 비탈면의 붕괴가 자주 발생하고 있다. 비탈면의 붕괴를 방지하기 위해서 활동저항력을 증가시키거나 간극수압을 감소시키는 등의 다양한 공법들이 적용되고 있으며, 활동저항력과 간극수압의 조건을 동시에 만족시킬 수 있는 공법이 적용되면 비탈면 붕괴에 효율적으로 대응할 수 있기 때문에 이에 관한 연구가 꾸준히 수행되고 있는 추세이다. 따라서 본 연구에서는 기존 수평으로 적용되는 배수재의 매설 경사를 상향 방향으로 매설하여, 비탈면의 보강 및 배수 기능을 모두 만족시킬 수 있는 상향식 비탈면 보강 공법을 제안하였다. 또한, 제안한 공법의 보강 및 배수효과가 가장 우수한 매설각도를 확인하기 위해 대표 단면에 수평 배수재를 0°~60°로 10° 단위로 설정한 조건에서 공법의 보강 및 배수 효과를 확인하였으며, 배수효과가 가장 뛰어난 40°와 안전율이 가장 우수한 20°의 조건으로 실내 모형실험을 수행하여 수치해석 결과를 검증하였다. 그 결과, 수치해석 결과와 마찬가지로 40°에서 상대적으로 배수효과가 높게 나타났으며, 20°의 경우 원활한 배수가 이루어지지 않아 비탈면이 붕괴되는 현상을 관찰할 수 있었다. 또한, 상향식 비탈면 보강재의 보강 및 배수효과를 확인할 수 있었다.

Cerebellar Hemorrhage due to a Direct Carotid-Cavernous Fistula after Surgery for Maxillary Cancer

  • Kamio, Yoshinobu;Hiramatsu, Hisaya;Kamiya, Mika;Yamashita, Shuhei;Namba, Hiroki
    • Journal of Korean Neurosurgical Society
    • /
    • 제60권1호
    • /
    • pp.89-93
    • /
    • 2017
  • Infratentorial cerebral hemorrhage due to a direct carotid-cavernous fistula (CCF) is very rare. To our knowledge, only four such cases have been reported. Cerebellar hemorrhage due to a direct CCF has not been reported. We describe a 63-year-old female who presented with reduced consciousness 3 days after undergoing a maxillectomy for maxillary cancer. Computed tomography showed a cerebellar hemorrhage. Magnetic resonance angiography showed a left-sided direct CCF draining into the left petrosal and cerebellar veins through the left superior petrosal sinus (SPS). Her previous surgery had sacrificed the pterygoid plexus and facial vein. Increased blood flow and reduced drainage could have led to increased venous pressure in infratentorial veins, including the petrosal and cerebellar veins. The cavernous sinus has several drainage routes, but the SPS is one of the most important routes for infratentorial venous drainage. Stenosis or absence of the posterior segment of the SPS can also result in increased pressure in the cerebellar and pontine veins. We emphasize that a direct CCF with cortical venous reflux should be precisely evaluated to determine the hemodynamic status and venous drainage from the cavernous sinus.

항응고제 투여중인 다발성 장애환자에서 골수이식전 발치창 출혈부의 전색과 배농술을 통한 출혈과 감염의 조절 : 증례보고 (BLEEDING & INFECTION CONTROL BY THE PACKING AND DRAINAGE ON BLEEDING EXTRACTION SOCKET BEFORE BONE MARROW TRANSPLANTATION IN A MULTIPLE DISABLED PATIENT WITH ANTICOAGULATION DRUG : REPORT OF A CASE)

  • 유재하;손정석;김종배
    • 대한장애인치과학회지
    • /
    • 제8권1호
    • /
    • pp.15-21
    • /
    • 2012
  • Extraction of all nonrestorable teeth prior to bone marrow transplantation is the major dental management of the patient being prepared for the transplantation. But, there are four principal causes for excessive bleeding in the immediate postextraction phase ; (1) Vascular wall alteration (wound infection, scurvy, chemicals, allergy) (2) Disorders of platelet function (3) Thrombocytopenic purpuras (4) Disorders of coagulation (liver disease, anticoagulation drug-heparin, coumarin, aspirin, plavix) If the hemorrhage from postextraction wound is unusually aggressive, the socket must be packed with local hemostatic agent and wound closure & pressure dressing are applied. But, in dental alveoli, local hemostatic agent (gelfoam, surgcel etc) may absorb oral microorganisms and cause alveolar osteitis (infection). This is a case report of bleeding and infection control by suture, pressure packing and iodoform gauze drainage on infected active bleeding extraction socket under sedation and local anesthesia in a 57-years-old multiple disabled patient with anticoagulation drug.

Permeability-increasing effects of hydraulic flushing based on flow-solid coupling

  • Zhang, Jiao;Wang, Xiaodong
    • Geomechanics and Engineering
    • /
    • 제13권2호
    • /
    • pp.285-300
    • /
    • 2017
  • Shallow coal resources are increasingly depleted, the mining has entered the deep stage. Due to "High stress, high gas, strong adsorption and low permeability" of coal seam, the gas drainage has become more difficult and the probability of coal and gas outburst accident increases. Based on the flow solid coupling theory of coal seam gas, the coupling model about stress and gas seepage of coal seam was set up by solid module and Darcy module in Comsol Multiphysics. The gas extraction effects were researched after applying hydraulic technology to increase permeability. The results showed that the effective influence radius increases with the expanded borehole radius and drainage time, decreases with initial gas pressure. The relationship between the effective influence radius and various factors presents in the form: $y=a+{\frac{b}{\left(1+{(\frac{x}{x_0})^p}\right)}}$. The effective influence radius with multiple boreholes is obviously larger than that of the single hole. According to the actual coal seam and gas geological conditions, appropriate layout way was selected to achieve the best effect. The field application results are consistent with the simulation results. It is found that the horizontal stress plays a very important role in coal seam drainage effect. The stress distribution change around the drilling hole will lead to the changes in porosity of coal seam, further resulting in permeability evolution and finally gas pressure distribution varies.

단백포소화약제의 유동성 변화에 따른 소화 특성 (The Extinguishing Characteristics by Fluidity Variation of Protein Foam Extinguishing Agent)

  • 신창섭;정현정
    • 한국안전학회지
    • /
    • 제29권2호
    • /
    • pp.18-23
    • /
    • 2014
  • Foam extinguishing agent is widely used for extinguishing combustible liquid fires. Compared to other foam type extinguishing agents, protein foam has relatively low cost and low toxicity and produces stable foam blanket which is excellent in heat resistance and sealability, despite it has weak fluidity. Therefore the study investigated foaming characteristics followed by various factors affecting the fluidity of the protein foam extinguishing agent. The extinguishing characteristics differentiated by the changes in fluidity were also experimented. Foaming performance was compared by measuring the expansion ratio and the 25% drainage time. Moreover, the 25% drainage time and the extinguishing time was compared. The results showed that the 25% drainage time and the expansion ratio were increased as the pressure of nozzle and the concentration of hydrolyzed protein liquid enlarged. However the foaming and extinguishing performance were not improved when the condition exceeded certain level of pressure and concentration. The fastest fire extinguishing condition was the nozzle pressure 4bar with the 85wt.% of concentration of hydrolyzed protein liquid.

셀룰로오스 나노피브릴 현탁액의 탈수성 평가 및 양이온성 고분자전해질 투입의 영향 (Evaluation of Dewatering of Cellulose Nanofibrils Suspension and Effect of Cationic Polyelectrolyte Addition on Dewatering)

  • 류재호;심규정;윤혜정
    • 펄프종이기술
    • /
    • 제46권6호
    • /
    • pp.78-86
    • /
    • 2014
  • Since cellulose nanofibrils (CNF) has large specific surface area and high water holding capacity, it is very difficult task to remove water from the CNF suspension. However, dewatering of CNF suspension is a prerequisite of following processes such as mat forming and drying for the application of CNF. In this study, we evaluated the drainage of cellulose fibers suspension under vacuum and pressure conditions depending on the number of grinding passes. Also, the effect of the addition of cationic polyelectrolyte on dewatering ability of CNF suspension was investigated. Regardless of dewatering condition, the total drained water amount as well as the drainage rate were decreased with an increase in the number of grinding passes. Pressure dewatering equipment enables us to prepare wet CNF mat with relatively higher grammage. The cationic polyelectrolytes improved the dewatering ability of CNF suspension by controlling the zeta potential of CNF. The fast drainage was obtained when CNF suspension had around neutral zeta potential.

지하철의 터널 배수체계에 따른 결함 사레 (Case Study on defects of Tunnel Drainage in Subway)

  • 김석조;이재욱;조성우;신용석
    • 한국터널공학회:학술대회논문집
    • /
    • 한국터널공학회 2005년도 학술발표회 논문집
    • /
    • pp.292-298
    • /
    • 2005
  • Tunnel in subway should be designed as a water-proof type tunnel as much as possible but it is difficult to make it come true due to several facts, such as construction technique and cost. A drainage type tunnel as a substitute of a water-proof tunnel lead to the increase of water pressure on the concrete lining that make bad effect to tunnel structure when it has some problem to operate the drainage system. Throughout studying about cases on defects of tunnel drainage in subway We hope it contributes to tunnel maintenance.

  • PDF

부압을 이용한 배수시스템의 비정상상태 유동특성해석 (Study on the unsteady characteristics of depressurized drainage system)

  • 이길석;이진호
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회B
    • /
    • pp.2682-2687
    • /
    • 2008
  • Depressurized drainage systems have been used for more than 30 years and are becoming a common part of urban drainage infrastructures. The hydraulic principles governing the operation of the depressurized drainage systems were studied in this paper and particularly, focused on the analysis of unsteady characteristics of the two-phase flow. A definition of the filling ratio was outlined and types of flow pattern were classified according to the filling ratio. Experiments were conducted to investigate the main features of pressure fluctuation. All results were found to depend on the filling ratio of the upstream pipe flow as well as the upstream Froude number.

  • PDF

Shear infiltration and constant water content tests on unsaturated soils

  • Rasool, Ali Murtaza;Aziz, Mubashir
    • Geomechanics and Engineering
    • /
    • 제19권5호
    • /
    • pp.435-445
    • /
    • 2019
  • A series of element tests with different drainage conditions and strain rates were performed on compacted unsaturated non-plastic silt in unconfined conditions. Soil samples were compacted at water contents from dry to wet of optimum with the degree of saturation varying from 24 to 59.5% while maintaining the degree of compaction at 80%. The tests performed were shear infiltration tests in which specimens had constant net confining pressure, pore air pressure was kept drained and constant, just before the shear process pore water pressure was increased (and kept constant afterwards) to decrease matric suction and to start water infiltration. In constant water content tests, specimens had constant net confining pressure, pore air pressure was kept drained and constant whereas pore water pressure was kept undrained. As a result, the matric suction varied with increase in axial strain throughout the shearing process. In both cases, maximum shear strength was obtained for specimens prepared on dry side of optimum moisture content. Moreover, the gradient of stress path was not affected under different strain rates whereas the intercept of failure was changed due to the drainage conditions implied in this study.

Frequency-constrained polygonal topology optimization of functionally graded systems subject to dependent-pressure loads

  • Thanh T. Banh;Joowon Kang;Soomi Shin;Lee Dongkyu
    • Steel and Composite Structures
    • /
    • 제51권4호
    • /
    • pp.363-375
    • /
    • 2024
  • Within the optimization field, addressing the intricate posed by fluidic pressure loads on functionally graded structures with frequency-related designs is a kind of complex design challenges. This paper thus introduces an innovative density-based topology optimization strategy for frequency-constraint functionally graded structures incorporating Darcy's law and a drainage term. It ensures consistent treatment of design-dependent fluidic pressure loads to frequency-related structures that dynamically adjust their direction and location throughout the design evolution. The porosity of each finite element, coupled with its drainage term, is intricately linked to its density variable through a Heaviside function, ensuring a seamless transition between solid and void phases. A design-specific pressure field is established by employing Darcy's law, and the associated partial differential equation is solved using finite element analysis. Subsequently, this pressure field is utilized to ascertain consistent nodal loads, enabling an efficient evaluation of load sensitivities through the adjoint-variable method. Moreover, this novel approach incorporates load-dependent structures, frequency constraints, functionally graded material models, and polygonal meshes, expanding its applicability and flexibility to a broader range of engineering scenarios. The proposed methodology's effectiveness and robustness are demonstrated through numerical examples, including fluidic pressure-loaded frequency-constraint structures undergoing small deformations, where compliance is minimized for structures optimized within specified resource constraints.