• Title/Summary/Keyword: Pressure cooling

Search Result 1,371, Processing Time 0.029 seconds

Study on Cooling Characteristics of the Tunnel Type Pressure Pre-Cooling System

  • Lee W. O.;Yun H. S.;Lee K. W.;Jeong H.;Cho K. H.;Cho Y. K.;Lee J. H.
    • Agricultural and Biosystems Engineering
    • /
    • v.4 no.2
    • /
    • pp.58-65
    • /
    • 2003
  • An understanding of the cooling requirements of horticultural commodities begins with adequate knowledge of their biological responses. All fresh horticultural products are living organisms, carrying on the many biological processes that are essential to the maintenance of life. The pre-cooling is essential technique for the construction of cold chain system, which is necessary to maintain marketing quality of fresh produces during the transportation and distribution. The purpose of this study is to develop the pressure cooling tunnel using conveyer for the reduction of labor and improvement of pre-cooling efficiency. Performance of developed facility was tested for the strawberries, tomatoes and Chinese cabbages. Cooling ratio as a result of pre-cooling efficiency was 1.57, 1.56 and 1.32 for strawberries, tomatoes, and Chinese cabbages respectively. Cooling ratio decreased with increasing the distance of heat conduction from surface to center. The cooling ratio of Chinese cabbages was lower than that of fruit because of its head and leaf. In aspect of cooling uniformity, there was no significant difference of final temperature among inlet, outlet and middle layers of cold air in fresh produces. After pre-cooling treatment, quality changes were measured for the weight loss, Vit. C content, and titratable acidity. The quality of pre-cooling treatment was better than that of non-treatment and was kept on well during long-term storage.

  • PDF

Improvement of Film Cooling Performance of a Slot on a Flat Plate Using Coanda Effect (코안다 효과를 이용한 평판 슬롯의 막냉각 성능 향상)

  • Kim, Gi Mun;Kim, Ye Jee;Kwak, Jae Su
    • The KSFM Journal of Fluid Machinery
    • /
    • v.20 no.2
    • /
    • pp.5-10
    • /
    • 2017
  • In this study, the Coanda effect inducing bump was applied to improve the film cooling effectiveness on the flat plate with $30^{\circ}$ and $45^{\circ}$ angled rectangular slots. The slot length to width ratio was 6. A cylindrical cap shaped structure, called Coanda bump, was installed at the exit of the slot to generate Coanda effect. The width and height of the bump was 10.5 mm and 1 mm, respectively. The film cooling effectiveness was measured at the fixed blowing ratio, M=2.0, using pressure sensitive paint (PSP) technique. The mainstream velocity was 10 m/s and the turbulence intensity was about 0.5%. Results showed that the film cooling effectiveness for case of $30^{\circ}$ angled slot was higher than that of $45^{\circ}$ angled slot. It was found that there was no positive effect of Coanda effect on the overall averaged film cooling effectiveness for the $30^{\circ}$ angled slot. On the other hand, for the $45^{\circ}$ angled slot, the film cooling effectiveness was improved with the installation of the Coanda bump.

An innovative approach for the numerical simulation of oil cooling systems

  • Carozza, A.
    • Advances in aircraft and spacecraft science
    • /
    • v.2 no.2
    • /
    • pp.169-182
    • /
    • 2015
  • Aeronautics engine cooling is one of the biggest problems that engineers have tried to solve since the beginning of human flight. Systems like radiators should solve this purpose and they have been studied extensively and various solutions have been found to aid the heat dissipation in the engine zone. Special interest has been given to air coolers in order to guide the air flow on engine and lower the high temperatures achieved by the engine in flow conditions. The aircraft companies need faster and faster tools to design their solutions so the development of tools that allow to quickly assess the effectiveness of an cooling system is appreciated. This paper tries to develop a methodology capable of providing such support to companies by means of some application examples. In this work the development of a new methodology for the analysis and the design of oil cooling systems for aerospace applications is presented. The aim is to speed up the simulation of the oil cooling devices in different operative conditions in order to establish the effectiveness and the critical aspects of these devices. Steady turbulent flow simulations are carried out considering the air as ideal-gas with a constant-averaged specific heat. The heat exchanger is simulated using porous media models. The numerical model is first tested on Piaggio P180 considering the pressure losses and temperature increases within the heat exchanger in the several operative data available for this device. In particular, thermal power transferred to cooling air is assumed equal to that nominal of real heat exchanger and the pressure losses are reproduced setting the viscous and internal resistance coefficients of the porous media numerical model. To account for turbulence, the k-${\omega}$ SST model is considered with Low- Re correction enabled. Some applications are then shown for this methodology while final results are shown in terms of pressure, temperature contours and streamlines.

The Design and Hot-firing tests of a Water-cooled High Pressure Sub-scale Combustor (물냉각 고압 축소형 연소기의 설계 및 연소시험)

  • Lee, Kwang-Jin;Kim, Jong-Gyu;Lim, Byoung-Jik;Ahn, Kyu-Bok;Seo, Seong-Hyeon;Han, Yeoung-Min;Choi, Hwan-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.11 no.3
    • /
    • pp.1-6
    • /
    • 2007
  • A 3-tonf-class high pressure sub-scale combustor was designed and manufactured to study the performance improvement of combustor. The combustor consists of a combustion chamber with film cooling, thermal barrier coating and water cooling channels to prevent thermal demage of the hardware and an injector head with 37 coaxial swirl injectors. Hot-firing tests were carried out at the design point with varying flow rate for film cooling. The test result revealed that the increase of film cooling flow rate decreases the combustion performance, but in the cases of similar film cooling flow rates, the combustion performance is dependent on the mixture ratio of main injector excluding the film cooling flow rate.

Effect of Coolant Flow Passages Between Cylinder Blocks on the Cooling Performance of a Heavy-duty Diesel Engine (실린더 블록 사이의 냉각수 유입홀이 대형 디젤엔진의 냉각성능에 주는 영향)

  • Lee, Sang-Kyoo;Rhim, Dong-Ryul;Lee, Sang-Up;Kim, Min-Jung;Yoo, Seung-Hyun
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.341-344
    • /
    • 2006
  • In this analytical study on the engine coolant flow of a heavy-duty diesel engine with 4 valves and linear-type 8 liter 6 cylinders, the characteristics of pressure drop and engine cooling performance with the additional coolant passages between cylinder blocks have been investigated. Since the most part of pressure drop is caused by the coolant flow passages inside a cylinder head and cylinder blocks for this type of heavy-duty diesel engines, the advantage of pressure drop is just 2.6% and the characteristics of heat transfer and the distribution of coolant velocities in the head part show little differences in case of additional coolant passages. Thus the coolant flow passages between cylinder blocks make little contribution on the cooling performance of heavy-duty diesel engines

  • PDF

Development of the Front End Cooling Fan of a Car (자동차 프런트 엔드 쿨링팬 개발)

  • Oh, Keon-Je;Cho, Won-Bong;Bae, Chun-Keun;Lee, Su-Hwa;Lee, Seung-Bae;Ju, Phil-Ho;Kim, Jong-Cheol
    • 유체기계공업학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.384-390
    • /
    • 2005
  • A automobile front-end cooling fan are designed and tested in the present study. The design technique is developed using the one-dimensional inviscid flow through the fan blade, the empirical equations, and the performance prediction models. Numerical calculations of the three-dimensional turbulent flow around the designed cooling fan are carried out. Flow characteristics and pressure distributions on the pressure and suction side of the fan are investigated. Performance test results of the total pressure and flow rate are presented.

  • PDF

Evaluation of Heat Balance for Cooling System of an Armored Installation in Small Space (좁은 공간 내의 밀폐형 장치 냉각시스템에 대한 열평형 평가)

  • Kim, Sung-Kwang;Ahn, Seok-Hwan;Nam, Ki-Woo
    • Journal of Ocean Engineering and Technology
    • /
    • v.21 no.3 s.76
    • /
    • pp.1-7
    • /
    • 2007
  • In this study, the heat balance test of an engine was conducted, and the heat released to coolant is measured and corrected using a power adjustment factor for high fuel temperature to simulate heat rejection of the engine. An engine-converter matching simulation program which can compute the engine speed, transmission output speed, transmission input and output power is developed from the vehicle, transmission and engine performance curve. With this information and the engine heat rejection characteristics, the engine and transmission heat rejection rates can be determined at given condition. In analyzing the air mass flow, a sub program computing the air mass flow rate from the equation of the pressure balance between cooling fan static pressure rise and pressure losses of cooling components is developed.

Wind loading characteristics of super-large cooling towers

  • Zhao, L.;Ge, Y.J.
    • Wind and Structures
    • /
    • v.13 no.3
    • /
    • pp.257-273
    • /
    • 2010
  • The aerodynamic and aero-elastic model tests of the China''s highest cooling tower has been carried out in the TJ-3 Boundary Layer Wind Tunnel of Tongji University. By adopting a scanivalve system, the external wind pressure is firstly measured on $12{\times}36$ taps for a single tower, two and four grouped towers under the condition of both smooth flow and the boundary layer due to surrounding geographic and building topography. The measurements of internal wind pressure distribution of $6{\times}36$ taps are taken for a single tower under the various ventilation ratios ranging from 0% to 100% of stuffing layers located at the bottom of the tower. In the last stage, the wind tunnel tests with an aero-elastic model are carefully conducted to determine wind-induced displacements at six levels (each with eight points) with laser displacement sensors. According to the measurement results of wind pressure or vibration response, the extreme aerodynamic loading values of the single or grouped towers are accordingly analyzed based on probability correlation technique.

Estimation of Hydrogen Filling Time Using a Dynamic Modeling (동적 모델링에 의한 수소 충전 시에 걸리는 시간의 산출)

  • NOH, SANGGYUN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.32 no.3
    • /
    • pp.189-195
    • /
    • 2021
  • A compressed hydrogen tank is to be repressurized to 40 bar by being connected to a high-pressure line containing hydrogen at 50 bar and 25℃. Hydrogen filling time and the corresponding hydrogen temperature has been estimated when the filling process stopped according to several thermodynamic models. During the process of cooling the hydrogen tank, hydrogen temperature and pressure vs. time estimation was performed using Aspen Dynamics. Filling time, hydrogen temperature after filling hydrogen gas, cooling time and the final tank pressure after tank filling process have been completed according to the thermodynamic models are almost same.

Numerical Study on the Pressure Loss for Various Angles and Diameters of Cooling Channel (냉각채널의 각도와 직경 변화에 따른 채널 내 압력 손실에 관한 수치적 연구)

  • Park, Jin;Lee, Hyunseob;Kim, Hongjip;Ahn, Kyubok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.2
    • /
    • pp.87-95
    • /
    • 2018
  • The pressure loss in a cooling channel was investigated by conducting a numerical analysis, which was performed with a different channel angle in the axial direction, velocity of flow, and diameter of channels. The pressure loss did not change much with respect to the different channel angle. However, the pressure loss tended to decrease if the diameter of the channel increased and the velocity of the flow decreased. The results were quantified by a nondimensional method and compared to an existing experimental equation to validate them. The data obtained by this study would be helpful in the design process of a cooling channel considering the pressure loss.