• Title/Summary/Keyword: Pressure contribution analysis

Search Result 101, Processing Time 0.023 seconds

Gendered Reporting Gap of the Housework Time: A Comparison of Time Diary and Stylized Survey Questionnaire (성별 가사노동시간 측정 : 시간일지와 서베이문항 방식 비교)

  • kim, Eun-Ji;kim, Su-Jeong
    • Survey Research
    • /
    • v.10 no.2
    • /
    • pp.1-21
    • /
    • 2009
  • The purpose of this study is to compare the estimates of housework time by gender using two representative methods of time use study: Time Diary and Stylized Survey Questionnaire. Our analysis is based on the data from the Lifetime Use Survey(2004), which used time-diary questions, and the Korean Labor & Income Panel Study(KLIPS 2004), which used stylized questions on housework hours. The results show that men over-report their housework time in the stylized time use questions. In contrast, women under-report their housework time, which is unusual in the previous studies on response errors and reporting gap. Subgroup analysis shows that widowed/divorced men tend to over-report their contribution to housework more than other groups whereas among women, groups burdened with employed work, caring and housework underestimate their housework time. This reporting gap is explained by gendered norm and perception of time pressure. The theory to explain under-reporting of the housework time has been undeveloped in the previous studies. Our study suggests that perceptions of time pressure be an important factor to explain women's reporting gap of housework estimates.

  • PDF

Round robin analysis of vessel failure probabilities for PTS events in Korea

  • Jhung, Myung Jo;Oh, Chang-Sik;Choi, Youngin;Kang, Sung-Sik;Kim, Maan-Won;Kim, Tae-Hyeon;Kim, Jong-Min;Kim, Min Chul;Lee, Bong Sang;Kim, Jong-Min;Kim, Kyuwan
    • Nuclear Engineering and Technology
    • /
    • v.52 no.8
    • /
    • pp.1871-1880
    • /
    • 2020
  • Round robin analyses for vessel failure probabilities due to PTS events are proposed for plant-specific analyses of all types of reactors developed in Korea. Four organizations, that are responsible for regulation, operation, research and design of the nuclear power plant in Korea, participated in the round robin analysis. The vessel failure probabilities from the probabilistic fracture mechanics analyses are calculated to assure the structural integrity of the reactor pressure vessel during transients that are expected to initiate PTS events. The failure probabilities due to various parameters are compared with each other. All results are obtained based on several assumptions about material properties, flaw distribution data, and transient data such as pressure, temperature, and heat transfer coefficient. The realistic input data can be used to obtain more realistic failure probabilities. The various results presented in this study will be helpful not only for benchmark calculations, result comparisons, and verification of PFM codes developed but also as a contribution to knowledge management for the future generation.

Prediction of the Aerodynamic Noise Generated by Pantograph on High Speed Trains (고속철도 판토그래프의 공력소음 기여도 연구)

  • Han, Jae Hyun;Kim, Tae Min;Kim, Jeung Tae
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.04a
    • /
    • pp.425-431
    • /
    • 2013
  • Nowadays, high speed train has settled down as a fast and convenient environment-friendly transportation and it's need is gradually increasing. However increased train speed leads to increased aerodynamic noise, which causes critically affects comfortability of passengers. Especially, the pantograph of high speed train is protruded out of train body, which is the main factor for increased aerodynamic noise. Since aerodynamic noise caused pantograph should be measured in high speed, it is difficult to measure it and to analysis aerodynamic noise characteristics due to the various types of pantograph. In this research, aerodynamic noise of pantograph is predicted by CFD (Computational Fluid Dynamic) and FW-H (Ffowcs Williams-Hawkings) equation. Also, Wind tunnel test results and numerical simulation results were compared. As a result, Simulation results predicting sound pressure level is very similar with wind tunnel test result. To analyze contribution of the pantograph to the noise of high-speed train, simulation results compared with measurement results of exterior noise. The simulation reuslts found that pantograph is a dominant noise source of high-speed trains's exterior noise in low frequency section. This dominant noise was come out from vortex shedding of the panhead in the pantograph. This research will be utilized for reduce sound pressure level of pantograph.

  • PDF

Study on Lumbar Spine Curvature and Lower Back Discomfort with Design Parameter of Automotive Seat Lumbar Support (자동차 요추지지대의 설계 변수에 따른 불편도 및 요추 변형과의 상관 관계 분석)

  • Yang, Jungtae;Lee, Joungho;Choi, Hyungyun
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.39 no.3
    • /
    • pp.192-197
    • /
    • 2013
  • In this study, it is investigated the relationship between sitting discomfort and major design variables of lumber support, such as prominence, height and width through volunteer tests. Korean $50^{th}$ percentile males and American $50^{th}$ percentile males are recruited among 36 to 45 years old peoples who have driving experiences and have no back pain during the past 12 months. Subject ratings are asked by changing design variables randomly. Body pressure and lumber position changes are also measured as object measures. And correlation among subject ratings, object measures and three design variables are analyzed using statistical analysis. As a result, it is revealed that prominence is the most dominant factor that correlates to the discomfort strongly for both-Koreans and Americans and contribution of other two variables are very low.

A New Measurement and Its Determinants for Corporate Environmental Management: An Empirical Study in Vietnam

  • TU, Anh Thuy;CHU, Phuong Thi Mai
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.8 no.8
    • /
    • pp.487-496
    • /
    • 2021
  • This study examines the environmental performance of firms in Vietnam and its determinants. The contribution of the paper is on both theoretical and empirical aspects. On the theoretical matter, the research proposes a new index measuring environmental management at the firm level, namely the Environmental Management Index with a clear illustration for the case of Vietnam. On the empirical matter, the study points out and estimates determinants of the corporate environmental performance of Vietnamese firms measured by the newly proposed index. Due to data availability and the impossibility of getting more updated data, the empirical analysis covers only the period from 2004-2009. However, findings are still meaningful because, on the one hand, it provides some evidence for Vietnamese policymakers; on the other hand, with the robust methodology proposed, when more recent data are available, researchers can easily replicate the estimation for more insights. Empirical results show that factors having positive impacts on the environmental performance of Vietnamese firms are profit, capital stock, and interestingly public pressure proxied by the population of the province where the firm is located. Firm ownership does also matter in explaining the corporate environmental performance of Vietnam.

PROCESS OF DESIGNING BODY STRUCTURES FOR THE REDUCTION OF REAR SEAT NOISE IN PASSENGER CAR

  • Kim, K.C.;Kim, C.M.
    • International Journal of Automotive Technology
    • /
    • v.8 no.1
    • /
    • pp.67-73
    • /
    • 2007
  • This study analyzes the interior noise that is generated during acceleration of a passenger car in terms of car body structure and panel contribution. According to the transfer method, interior noise is classified into structure-borne noise and air-borne noise. Structure-borne noise is generated when the engine's vibration energy, an excitation source, is transferred to the car body through the engine mount and the driving system and the panel of the car body vibrates. When structure-borne noise resonates in the acoustic cavity of the car interior, acute booming noise is generated. This study describes plans for improving the car body structure and the panel form through a cause analysis of frequency ranges where the sound pressure level of the rear seat relative to the front seat is high. To this end, an analysis of the correlation between body attachment stiffness and acoustic sensitivity as well as a panel sensitive component analysis were conducted through a structural sound field coupled analysis. Through this study, via research on improving the car body structure in terms of reducing rear seat noise, stable performance improvement and light weight design before the proto-car stage can be realized. Reduction of the development period and test car stage is also anticipated.

Prediction and analysis of structural noise of a box girder using hybrid FE-SEA method

  • Luo, Wen-jun;Zhang, Zi-zheng;Wu, Bao-you;Xu, Chang-jie;Yang, Peng-qi
    • Structural Engineering and Mechanics
    • /
    • v.75 no.4
    • /
    • pp.507-518
    • /
    • 2020
  • With the rapid development of rail transit, rail transit noise needs to be paid more and more attention. In order to accurately and effectively analyze the characteristics of low-frequency noise, a prediction model of vibration of box girder was established based on the hybrid FE-SEA method. When the train speed is 140 km/h, 200 km/h and 250 km/h, the vibration and noise of the box girder induced by the vertical wheel-rail interaction in the frequency range of 20-500 Hz are analyzed. Detailed analysis of the energy level, sound pressure contribution, modal analysis and vibration loss power of each slab at the operating speed of 140 km /h. The results show that: (1) When the train runs at a speed of 140km/h, the roof contributes more to the sound pressure at the far sound field point. Analyzing the frequency range from 20 to 500 Hz: The top plate plays a very important role in controlling sound pressure, contributing up to 70% of the sound pressure at peak frequencies. (2) When the train is traveling at various speeds, the maximum amplitude of structural vibration and noise generated by the viaduct occurs at 50 Hz. The vibration acceleration of the box beam at the far field point and near field point is mainly concentrated in the frequency range of 31.5-100 Hz, which is consistent with the dominant frequency band of wheel-rail force. Therefore, the main frequency of reducing the vibration and noise of the box beam is 31.5-100 Hz. (3) The vibration energy level and sound pressure level of the box bridge at different speeds are basically the same. The laws of vibration energy and sound pressure follow the rules below: web

Prediction of Heavy-Weight Floor Impact Sound in Multi-unit House using Finite Element Analysis (유한요소해석을 이용한 공동주택의 중량충격음 예측)

  • Mun, Dae-Ho;Lee, Sang-Hyun;Hwang, Jae-Seung;Baek, Gil-Ok;Park, Hong-Gun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.6
    • /
    • pp.645-657
    • /
    • 2015
  • In this study floor impact noise and structure acceleration response of bare concrete slabs were predicted by using Finite Element Analysis(FEA). Prediction results were compared with experimental results to prove the accuracy of numerical model. Acoustic absorption were addressed by using panel impedance coefficients with frequency characteristics and structural modal damping of numerical model were applied by modal testing results and analysis of prediction and test results. By using frequency response function, the floor acceleration and acoustic pressure responses for various impact sources were calculated at the same time. In the FEA, the natural frequencies and the shapes of vibration and acoustic modes can be estimated through the eigen-value analysis, and it can be visually seen the vibration and sound pressure field and the contribution of major modes.

Contribution of thermal-hydraulic validation tests to the standard design approval of SMART

  • Park, Hyun-Sik;Kwon, Tae-Soon;Moon, Sang-Ki;Cho, Seok;Euh, Dong-Jin;Yi, Sung-Jae
    • Nuclear Engineering and Technology
    • /
    • v.49 no.7
    • /
    • pp.1537-1546
    • /
    • 2017
  • Many thermal-hydraulic tests have been conducted at the Korea Atomic Energy Research Institute for verification of the SMART (System-integrated Modular Advanced ReacTor) design, the standard design approval of which was issued by the Korean regulatory body. In this paper, the contributions of these tests to the standard design approval of SMART are discussed. First, an integral effect test facility named VISTA-ITL (Experimental Verification by Integral Simulation of Transients and Accidents-Integral Test Loop) has been utilized to assess the TASS/SMR-S (Transient and Set-point Simulation/Small and Medium) safety analysis code and confirm its conservatism, to support standard design approval, and to construct a database for the SMART design optimization. In addition, many separate effect tests have been performed. The reactor internal flow test has been conducted using the SCOP (SMART COre flow distribution and Pressure drop test) facility to evaluate the reactor internal flow and pressure distributions. An ECC (Emergency Core Coolant) performance test has been carried out using the SWAT (SMART ECC Water Asymmetric Two-phase choking test) facility to evaluate the safety injection performance and to validate the thermal-hydraulic model used in the safety analysis code. The Freon CHF (Critical Heat Flux) test has been performed using the FTHEL (Freon Thermal Hydraulic Experimental Loop) facility to construct a database from the $5{\times}5$ rod bundle Freon CHF tests and to evaluate the DNBR (Departure from Nucleate Boiling Ratio) model in the safety analysis and core design codes. These test results were used for standard design approval of SMART to verify its design bases, design tools, and analysis methodology.

Effect of Boundary Conditions on Failure Probability of Buried Pipeline (매설배관의 경계조건이 파손확률에 미치는 영향)

  • Lee, Ouk-Sub;Pyun, Jang-Sik
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.311-316
    • /
    • 2001
  • A failure probability model based on Von-Mises failure criterion and the standard normal probability function is proposed. The effects of varying boundary conditions such as internal fluid pressure, external soil, traffic loads, temperature change and corrosion on failure probability of the buried pipes are systematically investigated. To allow for the uncertainties of the design variables, a reliability analysis technique has been adopted; this also allows calculation of the relative contribution of the random variables and the sensitivity of the failure probability.

  • PDF