• Title/Summary/Keyword: Pressure Welding

Search Result 560, Processing Time 0.027 seconds

A Study on Fatigue Characteristics of Dissimilar Spring Steel(SUP9A)-SM25C by Friction Welding (스프링강(SUP9A)-SM25C의 이종재 마찰용접 피로특성에 관한 연구)

  • 정석주;이기중
    • Journal of the Korean Society of Safety
    • /
    • v.16 no.3
    • /
    • pp.19-25
    • /
    • 2001
  • The friction-welding SM25C is a substitute for the suing steel that is utilized in the machinery, airplane, and automobile, ok. This substitution would provide reduction of material and weight of welding parts. From the result we found that the strength of the friction welded joint was 529-617MPa and the toughness 1.2 times higher than that of the base metal. The optimal condition of friction welding was found as follows : n=2000rpm, $P_1$=68㎫, $P_2$=137MPa, $t_2$=2sec, $t_1$=2-4sec, Considering the strength, the hardness, and the reduction of area in the friction welding, the fiction welding using SUP9A and SM25C was found to cause no problem in on-the-job application.

  • PDF

Analysis of CD Stud Welding Process and Defects Part 1: Process Modeling and Analysis (CD 스터드 용접의 해석 및 결함 분석 Part 1 : 공정 모델링과 해석)

  • Oh Hyun-Seok;Yoo Choong-D.
    • Journal of Welding and Joining
    • /
    • v.24 no.3
    • /
    • pp.34-41
    • /
    • 2006
  • The CD (Capacitor Discharge) stud welding utilizes the arc heat and pressure to attach the stud to the workpiece, which consists of the arc. ignition, arcing and pressure welding stages. In order to predict the dynamic behavior of the CD stud welding process, mechanical and electrical models are employed in this work. While the mechanical model estimates the duration of each stage, the electrical model predicts the voltage and current waveforms using the RLC circuit. Effects of process parameters such as the electric components and spring force are analyzed through simulation. It is found that the contact resistance and gap between the stud and base metal influence the tip fusing and arcing duration. The calculated results showed reasonably good agreements with the experiment results.

AUTOMATIC MULTITORCH WELDING SYSTEM WITH HIGH SPEED

  • Moon, H.S;Kim, J.S.;Jung, M.Y.;Kweon, H.J.;Kim, H.S.;Youn, J.G.
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.320-323
    • /
    • 2002
  • This paper presents a new generation of system for pressure vessel and shipbuilding. Typical pressure vessel and ship building weld joint preparations are either traditional V, butt, fillet grooves or have narrow or semi narrow gap profiles. The fillet and U groove are prevalently used in heavy industries and shipbuilding to melt and join the parts. Since the wall thickness can be up to 6" or greater, welds must be made in many layers, each layer containing several passes. However, the welding time for the conventional processes such as SAW(Submerged Arc Welding) and FCAW(Flux Cored Arc Welding) can be many hours. Although SAW and FCAW are normally a mechanized process, pressure vessel and ship structures welding up to now have usually been controlled by a full time operator. The operator has typically been responsible for positioning each individual weld run, for setting weld process parameters, for maintaining flux and wire levels, for removing slag and so on. The aim of the system is to develop a high speed welding system with multitorch for increasing the production speed on the line and to remove the need for the operator so that the system can run automatically for the complete multi-torch multi-layer weld. To achieve this, a laser vision sensor, a rotating torch and an image processing algorithm have been made. Also, the multitorch welding system can be applicable for the fine grained steel because of the high welding speed and lower heat input compare to a conventional welding process.

  • PDF

Evaluation of the Weldability of Cu Sheet through the Ultrasonic Metal Welding Experiment (Cu박판의 초음파 금속 용착 실험을 통한 용착성 평가)

  • Park, Woo-Yeol;Jang, Ho-Su;Kim, Jung-Ho;Park, Dong-Sam
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.4
    • /
    • pp.613-618
    • /
    • 2012
  • The Ultrasonic metal welding is used in the solid-phase welding method at room temperature or low temperature state. In welding process, the high frequency vibration energy is delivered to the welding part under the constant pressure for welding. In this study, we aimed to design and manufacture a 40,000 Hz band horn through finite element analysis. By performing modal analysis and harmonic response analysis, the modal analysis result is that the horn frequency was 39,599Hz and the harmonic response result that the horn frequency was 39,533Hz. These results were similar. In order to observe the designed horn's performance, about 4,000 voltage data was obtained from a light sensor and was analyzed by FFT analysis using Origin Tool. The result RMS amplitude was approximately $8.5{\mu}m$ at 40,000Hz, and maximum amplitude was $12.3{\mu}m$. Using this manufactured horn along with an ultrasonic metal welder and tension tester, the weldability of Cu sheets was evaluated. The maximum tensile force was 66.53 N in the welding condition of 2.0 bar pressure, 60% amplitude, and 0.32 s welding time. In excessive welding conditions, it was revealed that weldability is influenced negatively.

Study on the Frition Welding Characteristics of Oxygen Free High Conductivity Copper (무산소동의 마찰 용접 특성에 관한 연구)

  • 정호신;소전강
    • Journal of Ocean Engineering and Technology
    • /
    • v.11 no.1
    • /
    • pp.10-15
    • /
    • 1997
  • Copper and its alloy had been used widely because of its pronouncing characteristics on their high thermal and electrical conductivity. Various fusion welding methods, such as SMAW, SAW, GTAW, GMAW, Electroslag welding amd so on are applied to weld copper and its alloy. But fusion welding of copper has so many welding problems. THe most serious problems were poor penetration amd high thermal contration stress due to its high thermal conductivity and porosity could be formed by rapid cooling rate of fusion welding. In order to avoid such fusion welding problems, preheating, peering and heat treatment must be applied to obtain sound weld joint of copper. But preheating induce another welding problem such as grain coarsening of weld heat affected zone. This grain coarsening reduces ductility and strength of weld joint. In this view of point, friction welding of copper is triedm to obtain sound weld joint of copper by reducing metallurgical problems. This study introduced new concept of heat input for evaluating the friction weldability of copper. As a result, weldability of copper could be evaluated by this new concept of heat input.

  • PDF

Friction Welding Analysis of Welding Part Shape with Flow Gallery Considered Fluid Flow (유체 유동을 고려한 유동부를 갖는 용접부 형상의 마찰용접 해석)

  • Yeom, Sung-Ho;Kim, Bum-Nyun;Hong, Sung-In
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.11 no.3
    • /
    • pp.7-12
    • /
    • 2007
  • Friction welding is a welding method to use frictional heat of a couple of materials. In this paper object is that design the welding part shape with the flow gallery part which there is no effect in flow. Decided the welding part design parameter and doing the friction welding analysis used the rigid-plastic FEM program DEFORM-2D. To do friction welding analysis must input necessary flow stress data, friction coefficient by temperature change, upset pressure and Revolution per minute etc. According to analysis result, it decided the optimal shape of welding part with no effect in flow.

Effect of Heat Flux on the Melting Efficiency and Penetration Shape in TIG Welding (TIG 용접에서 열유속이 용융효율과 용입형상에 미치는 영향)

  • Oh, Dong-Soo;Cho, Sang-Myung
    • Journal of Welding and Joining
    • /
    • v.27 no.2
    • /
    • pp.44-50
    • /
    • 2009
  • The characteristics of arc pressure, current density and heat flux distribution are important factors in understanding physical arc phenomena, which will have a marked effect on the penetration, size and shape of a weld in TIG welding. The purpose of this study is to find out the effect of the heat flux on the melting efficiency and penetration shape in TIG welding using the results of the previous investigators. The conclusions obtained permit to draw a proper method which derived the heat flux distributions by arc pressure distribution measurements, but previous researchers calculated heat flux and current distribution with the heat intensity measurements by the calorimetry. Heat flux of Ar gas arc was concentrated at the central part and distributed low from the arc axis to the radial direction, that of He mixing arc was lower than that of Ar gas, and it was wide distributed to radial direction. That showed a similar characteristic with the Nestor's by calorimetry calculated values. Throughout heat flux drawn in this study was discussed melting efficiency and penetration shape on Ar gas and He mixing gas arc.

A Study on Mechanical Properties According to the Depth of Notch in SM20C Friction Welding Zone (SM20C 마찰용접부(摩擦鎔接部)의 노치 깊이에 따른 기계적(機械的) 성질(性質) 연구(硏究))

  • Lee, Se-Gyoung;Chung, Jun-Mo;Park, Chun-Bong;Min, Taeg-Ki
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.1
    • /
    • pp.1-8
    • /
    • 2007
  • The present study examined the mechanical properties of the friction welding zone of solid and hollow shafts made with SM20C according to the depth of the notch. Friction welding was conducted at welding conditions of 2,000 rpm, friction pressure of 60MPa, friction time of 1.4 seconds, upset pressure of 100MPa, and upset time of 2.0 seconds. In the tensile strength test, the tensile strength decreased as the depth of the notch increased. Tensile strength was moderately high when the depth of the notch was 2mm. The tensile strength of the welding zone increased as the friction revolution radius increased, because the latter led to the generation of adequate friction heat. According to the hardness test, hardness likewise increased as e friction revolution radius increased. In the bending test, the bend strength of the solid shaft decreased when the depth of the notch was 0-2mm but increased when the latter was 3-5mm. With regard to the hollow shaft, the bend strength drastically decreased when the depth of the notch was 3-4mm. Upon examination it was found that the microstructure became finer when the friction revolution radius increased.

Mechanical Properties of Friction Joint of AZ31Mg Alloy (AZ31마그네슘합금의 마찰접합특성)

  • Kong, Y.S.;Chun, B.K.;Kang, D.M.
    • Transactions of Materials Processing
    • /
    • v.19 no.5
    • /
    • pp.277-282
    • /
    • 2010
  • Magnesium alloy has been known as lightweight material in automobile and electronic industry with aluminum alloy, titanium alloy and plastic material. Friction welding is useful to join various metals and nonferrous metals that are difficult to join by such as gas welding, resistance welding and electronic beam welding. In this study, friction joining was performed to investigate mechanical properties of Mg alloy with 20mm diameter solid bar. Also the optimal joining conditions for its application were determined on the basis of tensile test, and hardness survey. The joining parameters were chosen as heating pressure, heating time, upsetting pressure, and upsetting time. Heating and upsetting pressure were executed under the range of 10~40MPa and 20~80MPa, respectively. From the experimental results, optimal joining conditions were determined as follows; rotating speed=2000rpm, heating pressure=35MPa, upsetting pressure=70MPa, heating time=1sec, upsetting time=5sec. Also the hardness of jointed boundary showed as HV50 which was similar to that of base metal at the optimal condition, and it was supposed that zone of HAZ was 8mm. Finally two materials were strongly mixed at interface part to show a well-combined microstructure without particle growth or any defect.

Determination of Welding Pressure in the Porthole Die Extrusion of Improved Al7003 Hollow Section Tubes (포트홀 다이를 이용한 개량된 Al7003 중공압출재의 접합압력결정)

  • Jeong C. S.;Jo H. H.;Kim B. M.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2000.10a
    • /
    • pp.74-77
    • /
    • 2000
  • Porthole die extrusion has a great advantage in the forming of hollow section tubes difficult to produce by conventional extrusion with a mandrel on the stem. Because of the complicated structure of die assembly, extrusion process as a forming of hollow section tubes has been investigated experimentally Therefore, analytic approaches that are useful in profitable die design and in the improvement of productivity are inevitably demanded Welding strength is affected by many parameters, which are such as extrusion ratio, extrusion speed, die shape, porthole number, bearing length, billet temperature and mandrel shape. In this paper, the parameters, which are such as billet temperature, bearing length and tube thickness, are examined. The welding pressures are examined through 3D simulation of non steady state and compared with experimental results.

  • PDF