• 제목/요약/키워드: Pressure Waves

검색결과 800건 처리시간 0.028초

막장력 측정을 통한 막구조물의 장력 유지관리 시스템 검토 (Review of Membrane Tension Maintenance System for Membrane Structures through Membrane Tension Measurement)

  • 진상욱;손수덕;이승재
    • 한국공간구조학회논문집
    • /
    • 제16권2호
    • /
    • pp.39-45
    • /
    • 2016
  • Membrane structure is a system that is stabilized by maintaining a tensile state of the membrane material that originally cannot resist the bending or pressure. Also, it is a system that allows the whole membrane structure to bear external loads caused by wind or precipitation such as snow, rain and etc. Tension relaxation phenomenon can transpire to the tension that is introduced to the fabric over time, due to the innate characteristics of the membrane material. Thus, it is important to accurately understand the size of the membrane tension after the completion of the structures, for maintenance and management purposes. The authors have proposed the principle of theoretically and indirectly measuring the tension by vibrating the membrane surface with sound waves exposures against the surface, which is compartmentalized by a rectangular boundary, and by measuring the natural frequency of the membrane surface that selectively resonates. The authors of this paper measured the tension of preexisting membrane structure for its maintenance by using the developed portable measurement equipment. Through analyzing the measurement data, the authors review the points that should be improved and the technical method for the new maintenance system of membrane tension.

깊이에 따른 소금의 고결화 강성특성 (Stiffness Characteristics of Salt Cementation according to Depth)

  • 엄용훈;변용훈;쭝꽝훙;이종섭
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2009년도 세계 도시지반공학 심포지엄
    • /
    • pp.472-481
    • /
    • 2009
  • Cementation phenomenon has a huge influence on geotechnical stiffness and strength under low confining pressure. The goal of this study is to evaluate the characteristics of stiffness according to the depth. The piezo disk elements are installed at each layer of the cell for the detection of the compressional waves. The change of compressional wave velocity is classified by three stages. The compressional wave velocities are shown different according to the depth. The compressional wave velocity is especially influenced by cementation, effective stress, and coordinate number. Furthermore, the electrical conductivity and cone tip resistance are measured according to the depth. The electrical conductivity and the cone tip resistance show the similar trend with the compressional wave velocity. This study shows that the cementation by salt is affected by the depth on the granular materials.

  • PDF

The technological state of the art of wave energy converters

  • GURSEL, K. Turgut
    • Advances in Energy Research
    • /
    • 제6권2호
    • /
    • pp.103-129
    • /
    • 2019
  • While global demand for energy increases annually, at the same time the demand for carbon-free, sulphur-free and NOx-free energy sources grows considerably. This state poses a challenge in the research for newer sources like biomass and shale gas as well as renewable energy resources such as solar, wind, geothermal and hydraulic energy. Although wave energy also is a form of renewable energy it has not fully been exploited technically and economically so far. This study tries to explain those reasons in which it is beyond doubt that the demand for wave energy will soon increase as fossil energy resources are depleted and environmental concerns gain more importance. The electrical energy supplied to the grid shall be produced from wave energy whose conversion devices can basically work according to three different systems. i. Systems that exploit the motions or shape deformations of their mechanisms involved, being driven by the energy of passing waves. ii. Systems that exploit the weight of the seawater stored in a reservoir or the changes of water pressure by the oscillations of wave height, iii. Systems that convert the wave motions into air flow. One of the aims of this study is to present the classification deficits of the wave energy converters (WECs) of the "wave developers" prepared by the European Marine Energy Center, which were to be reclassified. Furthermore, a new classification of all WECs listed by the European Marine Energy Center was arranged independently. The other aim of the study is to assess the technological state of the art of these WECs designed and/or produced, to obtain an overview on them.

COSMIC RAY ACCELERATION AT COSMOLOGICAL SHOCKS: NUMERICAL SIMULATIONS OF CR MODIFIED PLANE-PARALLEL SHOCKS

  • KANG HYESUNG
    • 천문학회지
    • /
    • 제36권3호
    • /
    • pp.111-121
    • /
    • 2003
  • In order to explore the cosmic ray acceleration at the cosmological shocks, we have performed numerical simulations of one-dimensional, plane-parallel, cosmic ray (CR) modified shocks with the newly developed CRASH (Cosmic Ray Amr SHock) numerical code. Based on the hypothesis that strong Alfven waves are self-generated by streaming CRs, the Bohm diffusion model for CRs is adopted. The code includes a plasma-physics-based 'injection' model that transfers a small proportion of the thermal proton flux through the shock into low energy CRs for acceleration there. We found that, for strong accretion shocks with Mach numbers greater than 10, CRs can absorb most of shock kinetic energy and the accretion shock speed is reduced up to $20\%$, compared to pure gas dynamic shocks. Although the amount of kinetic energy passed through accretion shocks is small, since they propagate into the low density intergalactic medium, they might possibly provide acceleration sites for ultra-high energy cosmic rays of $E\ll10^{18}eV$. For internal/merger shocks with Mach numbers less than 3, however, the energy transfer to CRs is only about $10-20\%$ and so nonlinear feedback due to the CR pressure is insignificant. Considering that intracluster medium (ICM) can be shocked repeatedly, however, the CRs generated by these weak shocks could be sufficient to explain the observed non-thermal signatures from clusters of galaxies.

SCR 시스템의 효율적인 운영을 위한 Soot Blowing 방법에 대한 해석적 연구 (Computational Study on the Soot Blowing Method for Enhancing the Performance of the SCR System)

  • 서문혁;장혁상
    • 한국입자에어로졸학회지
    • /
    • 제8권3호
    • /
    • pp.99-110
    • /
    • 2012
  • In the SCR (selective catalytic reduction) system which is used for controlling the NOx emission from the Diesel engines, the soot deposited on the catalysis causes degradation of the system performance. Numerical study was done to evaluate the performance of soot blower which is proposed as a method for removing the soot on the catalysis. The spray conditions and the effect of the compressed air from the AIG (air inlet gun) were analyzed numerically to evaluate the overall effective method of the soot blowing. The characteristics of the final velocity distribution and velocity waves across the inlet section of the catalysis were evaluated with respect to the geometries of the AIG outlets and pressure conditions. An experimental model was used to validate the results of the numerical calculation that is used for finding the effective removal blowing momentum transfer quantities of soot the inlet section of the catalysis, and it is proposed that the required minimum blowing momentum transfer quantities are over than 0.499 $kg/m{\bullet}t_{eff}$ in the current study.

超音速 노즐흐름에 있어서 凝縮이 傾斜衝擊波에 미치는 影響 (Effects of supersonic condensing nozzle flow on oblique shock wave)

  • 강창수;권순범
    • 대한기계학회논문집
    • /
    • 제13권3호
    • /
    • pp.547-553
    • /
    • 1989
  • 본 연구에서는 작동유체로서 수증기와 거동이 유사한 습공기를 대기 흡입식 풍동을 사용하여 원호 노즐로서 팽창시키는 경우에 대하여 응축충격파가 발생하는 흐름이 측정부내에 쐐기를 설치하여 발생시킨 경사충격파에 미치는 영향에 대해 실험적으로 조사하였다.

Analysis of Decontamination from Concrete by Microwave Power

  • 지광습
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 추계 학술발표회 제16권2호
    • /
    • pp.603-608
    • /
    • 2004
  • The paper analyzes a scheme of decontamination of radionuclides from concrete structures, in which rapid microwave heating is used to spall off a thin contaminated surface layer. The analysis is split in two parts: (1) The hygrothermal part of the problem, which consists in calculating the evolution of the temperature and pore pressure fields, and (2) the fracturing part, which consists in predicting the stresses, deformations and fracturing. The rate of the distributed source of heat due to microwaves in concrete is calculated on the basis of the standing wave normally incident to the concrete wall with averaging over both the time period and the wavelength because of the very short time period of microwaves compared to the period of temperature waves and the heterogeneity of concrete. The reinforcing bars parallel to the surface arc treated as a smeared steel layer. The microplane model M4 is used as the constitutive model for nonlinear deformation and distributed fracturing of concrete. The aim of this study is to determine the required microwave power and predict whether and when the contaminated surface layer of concrete spalls off. The effects of wall thickness, reinforcing bars, microwave frequencies and power are studied numerically. As a byproduct of this analysis, the mechanism of spalling of rapidly heated concrete is clarified.

  • PDF

파력발전용 횡류형 수력터빈의 성능 및 내부유동 (Performance and Internal Flow of a Cross-Flow Type Hydro Turbine for Wave Power Generation)

  • 최영도;조영진;김유택;이영호
    • 한국유체기계학회 논문집
    • /
    • 제11권3호
    • /
    • pp.22-29
    • /
    • 2008
  • Clean and renewable energy technologies using ocean energy give us non-polluting alternatives to fossil and nuclear-fueled power plants to meet establishment of countermeasures against the global warming and growing demand for electrical energy. Among the ocean energy resources, wave power takes a growing interest because of its enormous amount of potential energy in the world. Therefore, various types of wave power conversion system to capture the energy of ocean waves have been developed. However, suitable turbine type is not normalized yet because of relatively low efficiency of the turbine systems. The purpose of this study is to investigate the internal flow and performance characteristics of a cross-flow type hydro turbine, which will be built in a caisson for wave power generation. Numerical simulation using a commercial CFD code is conducted to clarify the effects of the turbine rotation speed and flow rate variation on the turbine characteristics. The results show that the output power of the cross-flow type hydro turbine with symmetric nozzle shape is obtained mainly from Stage 2. Turbine inlet configuration should be designed to obtain large amount of flow rate because the static pressure and absolute tangential velocity are influenced considerably by inlet flow rate.

Characterization of Helicon Plasma by H$_2$ Gas Discharge and Fabrication of Diamond Tinn Films

  • Hyun, June-Won;Kim, Yong-Jin;Noh, Seung-Jeong
    • Transactions on Electrical and Electronic Materials
    • /
    • 제1권2호
    • /
    • pp.12-17
    • /
    • 2000
  • Helicon waves were excited by a Nagoya type III antenna in magnetized plasma, and hydrogen and methane are fed through a Mass Flow Controller(MFC). We made a diagnosis of properties of helicon plasma by H$_2$gaseous discharge, and fabricated the diamond thin film. The maximum measured electron density was 1${\times}$10$\^$10/ cm$\^$-3/. Diamond films have been growo on (100) silicon substrate using the helicon plasma chemical vapor deposition. Diamond films were deposited at a pressure of 0.1 Torr, deposition time of 40~80 h, a substrate temperature of 700$^{\circ}C$ and methane concentrations of 0.5~2.5%. The growth characteristics were investigated by means of X-ray Photoelectron (XPS) and X-ray Diffraction(XRD), XRD and XPS analysis revealed that SiC was formed, and finally diamond particles were definitely deposited on it. With increasing deposition time, the thickness and crystallization of the daimond thin film increased, For this system the optimum condition of methane concentration was estimated to near to 1.5%.

  • PDF

3D Numerical Investigation on Reservoir System for an Overtopping Wave Energy Convertor

  • Jin, Jiyuan;Liu, Zhen;Hong, Key-Yong;Hyun, Beom-Soo
    • 한국항해항만학회지
    • /
    • 제36권2호
    • /
    • pp.97-103
    • /
    • 2012
  • Overtopping Wave Energy Convertor (OWEC) is an offshore wave energy convertor, which comprises the circular ramp and reservoir. It collects the overtopped waves and converting water pressure head into electric power through the hydro-turbines installed in the vertical duct, which is fixed in the sea bed. The performance of OWEC can be represented by the operating water heads of the device, which depends on the amount of the wave water overtopping into the reservoir. In the present paper, the reservoir with the duct connecting to the sea water are studied in the 3D numerical wave tank, which has been developed based on the computational fluid dynamics software Fluent 6.3. Both the overtopping motion and the discharges of the reservoir are investigated together, and several shape parameters and incident wave conditions are varied to demonstrate their effects on the performance of OWEC.