• Title/Summary/Keyword: Pressure Wave

Search Result 2,082, Processing Time 0.03 seconds

Response Prediction of Concrete Breakwater In Wave Impact Pressure (충격파압에 의한 콘크리트 방파제의 거동 예측)

  • 양종석;김성훈;김동완;경민수;김장호
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.197-202
    • /
    • 2002
  • The most common failure of breakwater comes from impact wave pressure generated by intense storms. This impact pressure is 10 folds greater than the pressure generated by normal waves. Therefore, the precise knowledge of magnitude of impact wave pressure applied on breakwater and its structural response is crucial for the economical and safe design. However, presently, a precise analysis of breakwater is restricted by insufficient and incorrect consideration of the effect of soil-structure Interaction. 3 major research areas included in this study are (1) theoretical analysis of impact wave pressure, (2) selection of breakwater structure model (3) soil-structure interaction analysis using limit analysis computer program. Based on this analysis, predicted response of concrete breakwater and probable failure location under wave impact pressure are determined.

  • PDF

Fundamental stuyd on reflection phenomenon of weak pressure-wave from an open end of a pipe (관단으로부터 미소 압력파의 반사에 관한 기초적 연구)

  • Kim, Hui-Dong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.5
    • /
    • pp.618-626
    • /
    • 1998
  • This paper describes a series of fundamental studies on reflection and emission of weak pressure waves from an open end of a pipe. Acoustical theories which have been employed in the plane pressure waves inside a pipe are applied to the present study. The objective of the present study is to investigate the reflection or emission coefficient of pressure wave at an open end of a pipe, the length of open end correction, and the directivity characteristics of the pressure waves emitted from the pipe. The results show that the reflection coefficient of pressure wave at an open end and the length of open end correction decrease for the wave length of pressure wave to increase. It is also found that the reflection coefficient for a baffle plate at the exit of pipe is larger than that for no baffle plate.

EFFECT ON BRAIN ACTIVITY OF CLOTHING PRESSURE BY WAIST BESTS - Effect of visual Information and Sexual Specificity of Brain Activity -

  • Kamijo, Masayoshi;Wakako, Rina;Hosoya, Satoshi;Nishimatsu, Toyonori;Sadoyama, Tsugutake;Shimizu, Yoshio
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2002.05a
    • /
    • pp.270-273
    • /
    • 2002
  • The purpose of our study is to clarify about the influence that the visual information gives to the brain activities when pressure exerted the abdomen by waist belts. The visual information means that the some different visual information is inputted it, and the brain activity is evaluated by Electroencephalogram(EEG) measurements. At the same time, we carried out the sensory tests and verified about the relations between the psychological stress and the brain activities. There was a difference in change in the power of the $alpha$ wave with the eyes opened between man and woman. from the result of the sensory test, in the case of under the condition in the darkness with the eyes opened, there was no change in the a wave with before the pressure and after the pressure. In the other cases, $alpha$ wave changed in the same way with before the pressure and after the pressure. In the case of the visible and the invisible in pressure place, $alpha$ wave changed in the same way with before the pressure and after the pressure, but there was a difference in value. From the above, it isn't recognized that the visual information is influencing a pressure sense but some influences are given to it to the brain activities.

  • PDF

Experimental study on compression wave propagating in a sudden reduction duct (급축소관을 전파하는 압축파에 관한 실험적 연구)

  • Kim, Hui-Dong;Matsuo, Kazuyasu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.9
    • /
    • pp.1139-1148
    • /
    • 1997
  • Compression waves propagating in a high-speed railway tunnel develops large pressure fluctuations on the train body or tunnel structures. The pressure fluctuations would cause an ear discomfort for the passengers and increase the aerodynamic resistance of trains. As a fundamental research to resolve the pressure wave phenomenon in the tunnel, experiments were carried out by using a shock tube with an open end. A blockage to model trains inside the tunnel was installed on the lower wall of shock tube, thus forming a sudden cross-sectional area reduction. The compression waves were obtained by the fast opening gate valve instead of a conventional diaphragm of shock tube and measured by the flush mounted pressure transducers with a high sensitivity. The experimental results were compared with the previous theoretical analyses. The results show that the ratio of the reflected to the incident compression wave at the sudden cross-sectional area reduction increases but the ratio of the passing to the incident compression wave decreases, as the incident compression wave becomes stronger. This experimental results are in good agreements with the previous theoretical ones. The maximum pressure gradient of the compression wave abruptly increases but the width of the wave front does not vary, as it passes over the sudden cross-sectional area reduction.

Experimental study of compression waves propagating into two-continuous tunnels (두 연속 터널을 전파하는 압축파의 실험적 연구)

  • Kim, Hui-Dong;Heo, Nam-Geon;Setoguchi, Toshiaki
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.10
    • /
    • pp.1294-1302
    • /
    • 1997
  • For the purpose of investigating the impulsive noise at the exit of high-speed railway tunnel and the pressure transients inside the tunnel, experiments were carried out using a shock tube with an open end. A great deal of experimental data were obtained and explored to analyze the peak pressures and maximum pressure gradients in the pressure waves. The effects of the distance and cross-sectional area ratio between two-continuous tunnels on the characteristics of the pressure waves were investigated. The peak pressure inside the second tunnel decreases for the distance and cross-sectional area ratio between two tunnels to increase. Also the peak pressure and maximum pressure gradient of the pressure wave inside the second tunnel increase as the maximum pressure gradient of initial compression wave increases.

Standing Wave Pressure Acting on the Mixed Type Breakwater

  • Oh, Young-Min;Lee, Kil-Seong;Chun, In-Sik
    • Proceedings of the Korean Society of Coastal and Ocean Engineers Conference
    • /
    • 1995.10a
    • /
    • pp.120-121
    • /
    • 1995
  • In the design of mixed type breakwater, the most important factor to be considered is the wave pressure. In particular, the standing wave pressure has a significant effect on the vertical wall breakwater or mixed type breakwater. Many wave pressure formulas were developed and the Goda's formula[1] was very frequently used among them by the coastal engineers due to its simplicity and accuracy. (omitted)

  • PDF

Nonlinear Uplift Wave Pressure Distribution Acting on the Caisson of Composite Breakwater (혼성방파제의 케이슨에 작용하는 비선형양압력분포에 관한 연구)

  • 김도삼;배기성
    • Journal of Ocean Engineering and Technology
    • /
    • v.15 no.4
    • /
    • pp.20-27
    • /
    • 2001
  • Recently numerical approaches for wave loads acting on the vertical caisson of breakwater, and resulting wave reflection and transmission coefficients have been performed. Although the numerical studies by Sulisz's(1997) and Kim et al.(2000) are suggested representatively, theoretical formulation for nonlinear wave pressure is not developed yet. And experimental results of Sulisz(1997) revealed that nonlinear uplift pressure on the caisson may be produced largely on the case of caisson founded on the high rubble mound. From the results of this study, the nonlinear theory for the uplift wave pressure acting on the caisson by applying boundary integral method of Green theorem is formulated, and also the characteristics of nonlinear uplift pressure and run-up height on the caisson are evaluated numerically, according to the variations of hydraulic properties of the rubble mound.

  • PDF

Experimental Study on Wave-Induced Hydraulic Pressure subjected to Bottom of Floating Structures (부유구조체 하면에 작용하는 파압에 대한 실험적 연구)

  • Jeong, Youn-Ju;You, Young-Jun;Lee, Du-Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.6A
    • /
    • pp.425-433
    • /
    • 2011
  • In this study, in order to investigate the wave-induced buoyancy effects, experimental studies were conducted on pontoon-type floating structures. A series of small-scale tests with various wave cases were performed on the pontoon models. A total of four small-scale pontoon models with different lateral shapes and bottom details were fabricated and tested under the five different wave cases. Six hydraulic pressure gauges were attached to the bottom surfaces of the pontoon models and the wave-induced hydraulic pressure was measured during the tests. Finally, hydraulic pressures subjected to the bottoms of the pontoon models were compared with each other. As the results of this study, it was found that whereas the waffled bottom shape hardly influenced the wave-induced hydraulic pressure, the hybrid lateral shape significantly influenced the wave-induced hydraulic pressure subjected on the bottoms of floating structures. The air gap effects of the hybrid shape contribute to decreasing the wave-induced hydraulic pressure due to absorption of wave impact energy. Compared with box type, the hydraulic pressures of the hybrid type were about 83% at the bow, 74% at the middle, and 53% at the stern.

One-Dimensional Numerical Study of Compression Wave Propagating in High-Speed Railway Tunnel (고속철도 터널내를 전파하는 압축파의 일차원 수치해석)

  • 김희동;엄용균;송미일태
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.5
    • /
    • pp.1280-1290
    • /
    • 1995
  • In order to investigate the compression wave propagating in a high-speed railway tunnel, a numerical calculation was applied to the wave phenomenon occurring in a model tunnel. Unsteady, one-dimensional inviscid or viscous flows were solved by an explicit TVD scheme, and the calculated flows were compared with the results of measurement in real tunnels. Tunnel noises caused by emission of the compression wave were characterized in terms of excess pressure of compression wave, pressure gradient in the wave front and width of the compression wave. Calculated attenuation, pressure gradient and width of compression wave with the propagating distance agreed with the results of measurement in the real tunnels. The results also show that tunnel noises are proportional to the train velocity entering the tunnel.

Laboratory Experiments for Solitary Wave Force on Vertical Structures (연직구조물에 작용하는 고립파 파력 특성에 관한 실험)

  • Han, Sejong;Seo, Gyu-Hak;Cho, Yong-Sik
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.11
    • /
    • pp.1067-1076
    • /
    • 2014
  • In this study, a series of hydraulic experiments are conducted to measure wave pressure on vertical structures with incident solitary waves that well represent characteristics of tsunamis. The pressure transducers measure time histories of wave pressure according to wave height to see pressure distribution. The force of incident solitary wave is estimated from integrated pressure distributions and represented with square and cylindrical columns. Experimental measurements are compared with the predictions of existing empirical formulas frequently used to design of coastal structures.