• Title/Summary/Keyword: Pressure Transients

Search Result 102, Processing Time 0.04 seconds

Analysis of the thermal-mechanical behavior of SFR fuel pins during fast unprotected transient overpower accidents using the GERMINAL fuel performance code

  • Vincent Dupont;Victor Blanc;Thierry Beck;Marc Lainet;Pierre Sciora
    • Nuclear Engineering and Technology
    • /
    • 제56권3호
    • /
    • pp.973-979
    • /
    • 2024
  • In the framework of the Generation IV research and development project, in which the French Commission of Alternative and Atomic Energies (CEA) is involved, a main objective for the design of Sodium-cooled Fast Reactor (SFR) is to meet the safety goals for severe accidents. Among the severe ones, the Unprotected Transient OverPower (UTOP) accidents can lead very quickly to a global melting of the core. UTOP accidents can be considered either as slow during a Control Rod Withdrawal (CRW) or as fast. The paper focuses on fast UTOP accidents, which occur in a few milliseconds, and three different scenarios are considered: rupture of the core support plate, uncontrolled passage of a gas bubble inside the core and core mechanical distortion such as a core flowering/compaction during an earthquake. Several levels and rates of reactivity insertions are also considered and the thermal-mechanical behavior of an ASTRID fuel pin from the ASTRID CFV core is simulated with the GERMINAL code. Two types of fuel pins are simulated, inner and outer core pins, and three different burn-up are considered. Moreover, the feedback from the CABRI programs on these type of transients is used in order to evaluate the failure mechanism in terms of kinetics of energy injection and fuel melting. The CABRI experiments complete the analysis made with GERMINAL calculations and have shown that three dominant mechanisms can be considered as responsible for pin failure or onset of pin degradation during ULOF/UTOP accident: molten cavity pressure loading, fuel-cladding mechanical interaction (FCMI) and fuel break-up. The study is one of the first step in fast UTOP accidents modelling with GERMINAL and it has shown that the code can already succeed in modelling these type of scenarios up to the sodium boiling point. The modeling of the radial propagation of the melting front, validated by comparison with CABRI tests, is already very efficient.

Modeling and analysis of selected organization for economic cooperation and development PKL-3 station blackout experiments using TRACE

  • Mukin, Roman;Clifford, Ivor;Zerkak, Omar;Ferroukhi, Hakim
    • Nuclear Engineering and Technology
    • /
    • 제50권3호
    • /
    • pp.356-367
    • /
    • 2018
  • A series of tests dedicated to station blackout (SBO) accident scenarios have been recently performed at the $Prim{\ddot{a}}rkreislauf-Versuchsanlage$ (primary coolant loop test facility; PKL) facility in the framework of the OECD/NEA PKL-3 project. These investigations address current safety issues related to beyond design basis accident transients with significant core heat up. This work presents a detailed analysis using the best estimate thermal-hydraulic code TRACE (v5.0 Patch4) of different SBO scenarios conducted at the PKL facility; failures of high- and low-pressure safety injection systems together with steam generator (SG) feedwater supply are considered, thus calling for adequate accident management actions and timely implementation of alternative emergency cooling procedures to prevent core meltdown. The presented analysis evaluates the capability of the applied TRACE model of the PKL facility to correctly capture the sequences of events in the different SBO scenarios, namely the SBO tests H2.1, H2.2 run 1 and H2.2 run 2, including symmetric or asymmetric secondary side depressurization, primary side depressurization, accumulator (ACC) injection in the cold legs and secondary side feeding with mobile pump and/or primary side emergency core coolant injection from the fuel pool cooling pump. This study is focused specifically on the prediction of the core exit temperature, which drives the execution of the most relevant accident management actions. This work presents, in particular, the key improvements made to the TRACE model that helped to improve the code predictions, including the modeling of dynamical heat losses, the nodalization of SGs' heat exchanger tubes and the ACCs. Another relevant aspect of this work is to evaluate how well the model simulations of the three different scenarios qualitatively and quantitatively capture the trends and results exhibited by the actual experiments. For instance, how the number of SGs considered for secondary side depressurization affects the heat transfer from primary side; how the discharge capacity of the pressurizer relief valve affects the dynamics of the transient; how ACC initial pressure and nitrogen release affect the grace time between ACC injection and subsequent core heat up; and how well the alternative feeding modes of the secondary and/or primary side with mobile injection pumps affect core quenching and ensure stable long-term core cooling under controlled boiling conditions.