• Title/Summary/Keyword: Pressure Surface

Search Result 6,617, Processing Time 0.035 seconds

Analysis of the Pressure Distribution for Press Shoe considering Partially Changed Curvature of Bearing Surface

  • Park, Sang-Shin;Park, Young-Ha;Lee, Young-Ze;Han, Man-Cheol
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.123-124
    • /
    • 2002
  • A press shoe is an element of a machine for squeezing water from wood pulp in the field of manufacturing paper. This is used to compress the pulp enveloped by felt sheet with a large roller. The squeezing force is made by hydraulic pressure. The press shoe has a mechanism similar to a partial hydrostatic bearing. The pressure profile between press shoe and roller affects their squeezing ability, and partial peak pressure can tear the wet pulp. The curvature of the surface of press shoe varies to reduce the peak pressure and increase the mean pressure simultaneously. Therefore, the prediction of pressure distribution considering partially changed curvature of hydrostatic bearing is very important for designing the press shoe. In this study, the difference formulation of Reynolds' equation for partial hydrostatic bearing is by direct numerical method and a computer program to calculate the pressure distribution is developed. We investigate the effect of partially changed curvature of bearing surface on the pressure distribution. Other design parameter for hydrostatic bearing such as depth of pocket and relative velocity are also studied.

  • PDF

Influnce of Cutting Pressure on Laser Cut Quality (Pressure Distribution of Cutting Gas) (레이저 절단품질에 미치는 절단압력의 영향 (1) (절단가스의 압력분포))

  • Yang, Yeong-Su;Na, Seok-Ju;Koo, Hyeong-Mo;Kim, Tae-Gyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.4 no.4
    • /
    • pp.84-92
    • /
    • 1987
  • To investigate the influence of the cutting pressure on the laser cutting quality, an expermental facility was constructed which can measure the cutting pressure distribution for various cutting conditions. Flow visualization was performed using the Schlieren photography and the pressure acting on the workpiece surface was measured, corresponding to the important process variables such as the kind of assist gas, nozzle pressure, distance between the nozzle exit and the workpiece surface, and the presence of the secondary nozzle. The cutting pressure acting on the workpiece was largely influenced by the nozzle pressure and nozzle-workpiece distance. The secondary nozzle which is used to raise the effective working pressure had its obvious role only when the angle between it and the main nozzle was small and when the distance between the nozzle exit and the workpiece surface was large.

  • PDF

Analysis of the Pressure Distribution for Press Shoe considering Partially Changed Curvature of Bearing Surface

  • Park, Sang-Shin;Park, Young-Ha;Lee, Young-Ze;Han, Man-Cheol
    • KSTLE International Journal
    • /
    • v.3 no.2
    • /
    • pp.90-94
    • /
    • 2002
  • A press shoe is an element of a machine for squeezing water from wood pulp in the field of manufacturing paper. This is used to compress the pulp enveloped by felt sheet with a large roller. The squeezing farce is made by hydraulic pressure. The press shoe has a mechanism similar to a partial hydrostatic bearing. The pressure profile between press shoe and roller affects their squeezing ability, and partial peak pressure can tear the wet pulp. The curvature of the surface of press shoe varies to reduce the peak pressure and increase the mean pressure simultaneously, Therefore, the prediction of pressure distribution considering partially changed curvature of hydrostatic bearing is very important far designing the press shoe. In this study, the difference formulation of Reynolds equation far partial hydrostatic bearing is derived by direct numerical method and a computer program to calculate the pressure distribution is developed. We investigate the effect of partially changed curvature of bearing surface on the pressure distribution. Other design parameter far hydrostatic bearing such as depth of pocket and relative velocity are also studied.

MONO-MATERIAL PRSSURE-CONDUCTIVE RUBBER SENSOR WITH TEMPERATURE SENSITIVITY FOR REALIZING ARTIFICIAL SKIN SENSING

  • Yuji, Jun-ichiro;Shida, Katsunori
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1314-1317
    • /
    • 1997
  • For realizing artificial skin sensing as a final goal, a mono-material pressure-conductive rubber sensor which is also sensitive for temperature is described. Firstly, discimination of the hardness and the thermal property of material using a proposed sensor is presented. Furthermore, a tactile sensor constints of four pressure-conductive rubber sensor to discriminate surface model which imitaties the surface roughness of material is proposed.

  • PDF

Comparison of PCB Surface Treatment Effect Using UV Equipment and Atmospheric Pressure Plasma Equipment (UV 장비 및 대기압 플라즈마 장비를 이용한 PCB 표면 처리 효과 비교)

  • Ryu, Sun-Joong
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.16 no.3
    • /
    • pp.53-59
    • /
    • 2009
  • Low pressure mercury lamp type UV equipments have been widely used for cleaning and modification of PCB surfaces. To enhance the productivity of the process, we newly developed remote DBD type atmospheric pressure plasma equipment. The productivity of both equipments could be compared by measuring surface contact angle for various transferring speed. By the result of the measurement, we could verify that the productivity of the atmospheric pressure plasma be superior to the productivity of the UV equipment. XPS experiments confirmed that the surface effect of the UV and atmospheric pressure plasma processing are similar for each other. Organic contamination level was reduced after the processing and some surface elements were oxidized for both cases. Finally, the atmospheric pressure plasma equipment was adapted to flip chip BGA's flux printing process and it was concluded that the printing uniformity be enhanced by the atmospheric pressure plasma surface treatment.

  • PDF

Earth Pressure on a Rigid wall due to Loads Condition and Distance (상재하중의 크기와 이격거리에 따른 강성벽체의 토압분포)

  • Oh, Bun-Jin;Lee, Sang-Duk
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.12
    • /
    • pp.51-60
    • /
    • 2010
  • Earth pressure due to gravity generally increases linearly with the depth, but the distribution of earth pressure due to surface load depends on the loading condition, the ground condition, and the boundary condition. In this study, the earth pressure on a rigid wall due to the vertical surface load was measured in experiments. Rigid wall was built in the model test box, and it was filled with homogeneous sandy ground (width 30 cm, height 88 cm, length 110 cm). Rigid wall was composed of 8 segments, which were tested on the two load cells. In the tests, we observed the distribution of the earth pressure on the rigid wall depending on the vertical surface load and it's location. According to the test results, the lateral earth pressure due to the vertical surface load showed its maximum value at a constant depth and decreased with the depth, to the negligible value at the critical depth. The critical depth and the depth at which lateral earth pressure reaches its maximum were not decided by the magnitude of the vertical surface load. They were dependant on the distance from the rigid wall.

Study of Supersonic Jet Impinging on a Jet Deflector (제트 편향기에 충돌하는 초음속 제트에 관한 연구)

  • 이택상;정조순;신완순;박종호;김윤곤
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.5 no.3
    • /
    • pp.10-18
    • /
    • 2001
  • In this paper, Supersonic jets impinging on a wedge were investigated in order to acquire fundamental design data for jet deflectors. Surface pressure distributions and pressure contours were obtained using a cold flow tester producing Mach 2 supersonic jets. Schlieren system was used to visualize the flow structure on the wedge surface. Numerical computations were performed and compared with the experimental results. Both results were in good agreement. The results showed that underexpansion ratio did not affect on the surface pressure distribution when the wedge is located at the nozzle exit. With increasing underexpansion ratio, pressure recovery decreased as the wedge is located farther from the nozzle exit. In the pressure contour, it was possible to locate the region where the peak pressure on the wedge surface was occurred.

  • PDF

Combustion characteristics in small combustion chamber that has high surface to volume ratio (고 표면적-체적 비를 가지는 소형 연소실 환경에서의 연소특성)

  • Lee, Dae-Hoon;Choi, Kwon-Hyoung;Kwon, Se-Jin
    • 한국연소학회:학술대회논문집
    • /
    • 2000.12a
    • /
    • pp.212-216
    • /
    • 2000
  • Combustion phenomenon in scale-downed combustor is investigated. As the combustor volume decreases surface to volume ratio increases. for increased surface to volume ratio means increased heat loss and this increased heat loss affects reaction in combustion chamber. Plastic mini combustor is made. Stoichiometricaly premixed Hydrogen I air gas is used as fuel. Initial chamber pressure and chamber size are varied and the effects are evaluated. Peak pressure decreases with the decrease in chamber height. As initial chamber pressure decreases peak pressure decreases. And this change is more important than scale down effect till the chamber height of 1mm. With this result and further information following the experiments design parameter for micro engine can be established.

  • PDF

Effect of Tip Clearance Height on Heat Transfer Characteristics on the Plane Tip Surface of a High-Turning Turbine Rotor Blade (팁간극이 고선회각 터빈 동익 평면팁 표면에서의 열전달에 미치는 영향)

  • Moon, Hyun-Suk;Lee, Sang-Woo
    • 유체기계공업학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.173-177
    • /
    • 2005
  • The heat/mass transfer characteristics on the plane tip surface of a high-turning first-stage turbine rotor blade has been investigated by employing the naphthalene sublimation technique. The heat/mass transfer coefficient is measured for four tip clearance height-to-chord ratios of h/c = 1.0%, 2.0%, 3.0%, and 4% at the Reynolds number of $2.09{\times}105$. The result shows that at lower h/c, there exists a strong flow separation/re-attachment process, which results in severe thermal load along the pressure-side comer. As h/c increases, the re-attachment is occurred further downstream of the pressure-side comer with lower thermal load. At higher h/c, a pair of vortices on the tip surface near the leading edge are found along the pressure-side and suction-side comers, and the pressure-side tip vortex have significant influence even on the mid-chord local heat transfer.

  • PDF

A model of roof-top surface pressures produced by conical vortices : Evaluation and implications

  • Banks, D.;Meroney, R.N.
    • Wind and Structures
    • /
    • v.4 no.4
    • /
    • pp.279-298
    • /
    • 2001
  • The greatest suction on the cladding of flat roof low-rise buildings is known to occur beneath the conical vortices that form along the roof edges for cornering winds. In a companion paper, a model of the vortex flow mechanism has been developed which can be used to connect the surface pressure beneath the vortex to adjacent flow conditions. The flow model is experimentally validated in this paper using simultaneous velocity and surface pressure measurement on a 1 : 50 model of the Texas Tech University experimental building in a wind tunnel simulated atmospheric boundary layer. Flow visualization gives further insight into the nature of peak suction events. The flow model is shown to account for the increase in suction towards the roof corner as well as the presence of the highest suction at wind angles of $60^{\circ}$. It includes a parameter describing vortex suction strength, which is shown to be related to the nature of the reattachment, and also suggests how different components of upstream turbulence could influence the surface pressure.