• Title/Summary/Keyword: Pressure Loss Coefficient

Search Result 255, Processing Time 0.026 seconds

Comparison of the Friction-Loss Coefficient for the Gap of Two Contact Surfaces and a Crack (접촉한 두 평면과 균열한 틈새에서의 유동마찰계수 비교)

  • Nam, Ho-Yun;Choi, Byoung-Hae;Kim, Jong-Bum;Lee, Young-Bum
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.10
    • /
    • pp.1075-1081
    • /
    • 2011
  • A leak-detection method has been developed by measuring the pressure variation between the inner and outer heattransfer tubes of a double-wall tube steam generator. An experiment was carried out to measure the leak rate in the gap between two surfaces pressed with a hydraulic press in order to simulate the phenomena, and a correlation was determined for the leak rate in a micro gap. However, in the correlation, the gap width and friction coefficient were coupled with the surface roughness, which affects the two parameters. The two parameters were separated using a surface-contact model to develop a correlation for the friction coefficient. The correlation was compared with the existing correlations used for crack analysis. Although the applied ranges of Reynolds numbers were different, the developed correlation for Reynolds numbers of 0.1.0.35 showed similar tendencies to existing correlations used for higher Reynolds numbers.

A Study on the Heat Tranfer Enhancement of Heat Exchangers with Corrugated Wall (주름진 판형 열교환기의 성능향상에 관한 연구)

  • Oh Yunyoung;Yoo Seongyeon;Ko Sungho
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.115-118
    • /
    • 2002
  • The present study deals with CFD analysis of a plastic heat exchanger with corrugated wall. This exchanger has sinusoidal corrugations, and the flow through the exchanger is three dimensional. In addition, CFX-5.4, a commercial code utilizing unstructured mesh, was used as a computational method for solving RANS(Reynolds-Averaged Navier-Stokes) equations, and the applied turbulence model is $k-{\varepsilon}$ model. The factors to affect the efficiency of a plastic heat exchanger are heat conductivity, flow characteristics and so on. For those two factors, heat conductivity is fixed by the wall material. Therefore, the How along the corrugation affects the efficiency more, provided the same material. In conclusion, the heat transfer enhancement of a plastic heat exchanger with corrugated wall can be recognized from the flow characteristics such as velocity streamline, local heat transfer coefficient, velocity contour, and pressure contour. To confirm the results, both of the measured and the computational data for pressure loss were compared with each other, and they were identical.

  • PDF

Flow Characteristics of Cryogenic Butterfly Valve for LNG Carrier (Part 2 : Flow Characteristics under Cryogenic Condition) (LNG선용 버터플라이밸브의 유동특성에 관한 연구 (제2부 : 극저온에서의 밸브 유동특성))

  • Kim, Sang-Wan;Choi, Young-Do;Kim, Bum-Suk;Lee, Young-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.11 no.2
    • /
    • pp.20-28
    • /
    • 2008
  • Recently, butterfly valves are used as control valves for industrial process. However, there are not so many reports on cryogenic butterfly valves in spite of broad application in LNG storage station and LNG carriers. Present study is focused on the investigation of the detailed hydrodynamic and aerodynamic characteristics of cryogenic butterfly valves to contribute to the operation during the handling on LNG transportation system, and to the practical utilization in design of butterfly valves and actuators. The results show that large recirculation vortices in the region downstream of the valve are founded and the cavitation flows are intensively generated on the surface of valve disc at the relatively small opening angle. The aerodynamic characteristics, lift, drag and torque, acting on the valve disc are calculated. The pressure distribution and the pressure loss coefficient of the cryogenic butterfly valve show almost similar pattern with those of the butterfly valve which is used on the normal temperature.

Study on Flow Instability and Countermeasure in a Draft tube with Swirling flow

  • Nakashima, Takahiro;Matsuzaka, Ryo;Miyagawa, Kazuyoshi;Yonezawa, Koichi;Tsujimoto, Yoshinobu
    • International Journal of Fluid Machinery and Systems
    • /
    • v.8 no.4
    • /
    • pp.230-239
    • /
    • 2015
  • The swirling flow in the draft tube of a Francis turbine can cause the flow instability and the cavitation surge and has a larger influence on hydraulic power operating system. In this paper, the cavitating flow with swirling flow in the diffuser was studied by the draft tube component experiment, the model Francis turbine experiment and the numerical simulation. In the component experiment, several types of fluctuations were observed, including the cavitation surge and the vortex rope behaviour by the swirling flow. While the cavitation surge and the vortex rope behaviour were suppressed by the aeration into the diffuser, the loss coefficient in the diffuser increased by the aeration. In the model turbine test the aeration decreased the efficiency of the model turbine by several percent. In the numerical simulation, the cavitating flow was studied using Scale-Adaptive Simulation (SAS) with particular emphasis on understanding the unsteady characteristics of the vortex rope structure. The generation and evolution of the vortex rope structures have been investigated throughout the diffuser using the iso-surface of vapor volume fraction. The pressure fluctuation in the diffuser by numerical simulation confirmed the cavitation surge observed in the experiment. Finally, this pressure fluctuation of the cavitation surge was examined and interpreted by CFD.

Effect of Swirl Flow Disturbance on Uncertainty of Flow Rate Measurement by Venturi (선회유동 교란에 따른 벤투리 유량측정의 불확실성 해석)

  • Lee, Jung-Ho;Yoon, Seok-Ho;Yu, Cheong-Hwan;Park, Sang-Jin;Chung, Chang-Hwan
    • The KSFM Journal of Fluid Machinery
    • /
    • v.12 no.6
    • /
    • pp.18-25
    • /
    • 2009
  • Venturi has long been an attractive method of measuring flow rate in a variety of engineering applications since pressure loss is relatively small compared with other measuring methods. The current study focuses on making detailed uncertainty estimations as the upstream flow disturbance affects uncertainty levels of the flow rate measurement. Upstream flow disturbance can be determined by 9 different swirl generators. Measurement uncertainty of flow rate has been estimated by a quantitative uncertainty analysis which is based on the ANSI/ASME PTC 19.1-2005 standard. The results of flow rate uncertainty analysis show that the case with systematic error has higher than that without systematic error. Especially the result with systematic error exhibits that the uncertainty of flow rate was gradually increased by swirl flow disturbance. The uncertainty of flow rate measurement can be mainly affected by differential pressure and discharge coefficient. Flow disturbance can be also reduced by increasing of the upstream straight length of Venturi.

A Numerical Study on the Eccentric Rotation Flow Characteristics of Drilling Fluid in Annuli (환형관내 굴착유체의 편심회전유동에 관한 수치해석적 연구)

  • Suh, B.T.;JANG, Y.K.;Kim, D.J.
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.13 no.4
    • /
    • pp.1-7
    • /
    • 2011
  • The paper concerns numerical study of fully developed laminar flow of a Newtonian water and non-Newtonian fluids, 0.2% aqueous of sodium carboxymethyl cellulose(CMC) solution in eccentric annuli with combined bulk axial flow and inner cylinder rotation. Pressure losses and skin friction coefficients have been measured when the inner cylinder rotates at the speed of 0~200 rpm. A numerical analysis considered mainly the effects of annular eccentricity and inner cylinder rotation. The present analysis has demonstrated the importance of the drill pipe rotation and eccentricity. In eccentricity of 0.7 of a Newtonian water, the flow field is recirculation dominated and unexpected behavior is observed. it generates a strong rotation directed layer, that two opposing effects act to create two local peaks of the axial velocity. The influences of rotation, radius ratio and working fluid on the annular flow field are investigated.

Design and Analysis of A Pico Propeller Hydro Turbine Applied in Fish Farms using CFD and Experimental Method

  • Tran, Bao Ngoc;Kim, Jun-ho
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.3
    • /
    • pp.373-380
    • /
    • 2019
  • In this paper, a pico hydro turbine employing low head circulation water at fish farms is designed and evaluated. Due to the advantages of simple structures, small head requirements, and low-cost investment, the constant thickness propeller turbine is considered as a feasible solution. The design process based on the free vortex method is presented in full detail, and a 4-blade runner is built using BladeGen. The turbine performance is analyzed both numerically and via experimental methods. Despite slight differences, the results show similar trends between CFD simulations and experiments carried out on factory test-rigs in a wide range of working conditions. At the design flow rate, the turbine achieves the best efficiency of 70 %, generating 3.5 kW power when rotating at 420 rpm. The internal flow field, as well as the turbine's behavior, are investigated through the distribution of blade streamlines, pressure, and velocity around the runner. Moreover, the pressure coefficient on the blade surface at 3 span positions is plotted while the head loss for each simulation domain is calculated and displayed by charts.

Numerical study on thermal-hydraulics of external reactor vessel cooling in high-power reactor using MARS-KS1.5 code: CFD-aided estimation of natural circulation flow rate

  • Song, Min Seop;Park, Il Woong;Kim, Eung Soo;Lee, Yeon-Gun
    • Nuclear Engineering and Technology
    • /
    • v.54 no.1
    • /
    • pp.72-83
    • /
    • 2022
  • This paper presents a numerical investigation of two-phase natural circulation flows established when external reactor vessel cooling is applied to a severe accident of the APR1400 reactor for the in-vessel retention of the core melt. The coolability limit due to external reactor vessel cooling is associated with the natural circulation flow rate around the lower head of the reactor vessel. For an elaborate prediction of the natural circulation flow rate using a thermal-hydraulic system code, MARS-KS1.5, a three-dimensional computational fluid dynamics (CFD) simulation is conducted to estimate the flow rate and pressure distribution of a liquid-state coolant at the brink of significant void generation. The CFD calculation results are used to determine the loss coefficient at major flow junctions, where substantial pressure losses are expected, in the nodalization scheme of the MARS-KS code such that the single-phase flow rate is the same as that predicted via CFD simulations. Subsequently, the MARS-KS analysis is performed for the two-phase natural circulation regime, and the transient behavior of the main thermal-hydraulic variables is investigated.

Performance analysis of R404A refrigeration system using R744 as secondary refrigerant (R744를 2차냉매로 사용하는 R404A용 냉동시스템의 성능 분석)

  • Oh, H.K.;Son, C.H.
    • Journal of Power System Engineering
    • /
    • v.16 no.2
    • /
    • pp.24-29
    • /
    • 2012
  • In this paper, an analysis on performance and exergy of R404A refrigeration system using R744 secondary refrigerant was performed numerically to optimize the design for the operating parameters. The operating parameters considered in this study include subcooling and superheating degree, internal heat exchanger and compression efficiency, evaporation and condensation temperature in the R404A refrigeration cycle and temperature difference of cascade heat exchanger. The main results are summarized as follows : The COP(coefficient of performance) of R404A refrigeration system increases with increasing evaporation temperature. The evaporation capacity of R744 as secondary refrigerant increases with the increase in evaporation pressure of R744 secondary refrigeration. And the enthalpy in the evaporator outlet of R744 increases with the increasing evaporation pressure of R744 secondary refrigeration. Therefore, it is important to analysis for the relationship between COP of R404A refrigeration system and refrigeration capacity of R744. As cascade evaporation temperature increase, the exergy loss of condenser and compressor using R404A is the largest among all components. Therefore, the exergy loss in the condenser and compressor using R404A must be decreased to enhance the COP of R404A refrigeration system with R744 secondary refrigerant.

Study on the improvement in Cv of a Main Oxidizer shut-off Valve (CC 산화제 개폐밸브 유량계수 향상에 관한 연구)

  • Hong, Moon-Geun
    • Aerospace Engineering and Technology
    • /
    • v.8 no.2
    • /
    • pp.140-148
    • /
    • 2009
  • MOV(Main Oxidizer shut-off Valves) control the combustion of launch vehicle systems by the supply and the isolation of liquid oxygen to a main combustion chamber in launch vehicle systems. Moreover, in the steady operational state, the MOV should secure a constant flow rate of liquid oxygen for combustion instability in the combustion chamber. Concerning the development of MOV, TM(Technology Model) has been manufactured and normal operations of the valve have been verified. However, the Cv of TM has been proved to be too low as compared with a design specification value. Therefore, CFD analysis have been performed by modification of the configurations of TM in order to increase sufficiently Cv of EM(Engineering Model), which is the following model of TM. The modifications of TM configurations such as partial scale-up of valve, increase of stroke length, and outlet angle of 120o would result in a considerable augmentation of Cv. It has been verified by flow capacity tests that the improved Cv of EM is min. 212, which is higher than Cv of TM, 161 by about 32%.

  • PDF