• 제목/요약/키워드: Pressure Loss Coefficient

검색결과 255건 처리시간 0.024초

가압경수로 이중냉각핵연료의 내측수로 막힘에 대한 전산유체역학 해석 (CFD ANALYSIS OF FLOW CHANNEL BLOCKAGE IN DUAL-COOLED FUEL FOR PRESSURIZED WATER REACTOR)

  • 인왕기;신창환;박주용;오동석;이치영;전태현
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2011년 춘계학술대회논문집
    • /
    • pp.269-274
    • /
    • 2011
  • A CFD analysis was performed to examine the inner channel blockage of dual-cooled fuel which has being developed for the power uprate of a pressurized water reactor (PWR). The dual-cooled fuel consists of an annular fuel pellet($UO_2$) and dual claddings as well as internal and external cooling channels. The dual-cooled annular fuel is different from a conventional solid 려el by employing an internal cooling channel for each fuel pellet as well as an external cooling channel. One of the key issues is the hypothetical event of inner channel blockage because the inner channel is an isolated flow channel without the coolant mixing between the neighboring flow channels. The inner channel blockage could cause the Departure from Nucleate Boiling (DNB) in the inner channel that eventually causes a fuel failure. This paper presents the CFD simulation of the flow through the side holes of the bottom end plug for the complete entrance blockage of the inner channel. Since the amount of coolant supply to the inner channel depends on largely the pressure loss at the side hole, the pressure loss coefficient of the side hole was estimated by the CFD analysis. The CFD prediction of the loss coefficient showed a reasonable agreement with an experimental data for the complete blockage of both the inner channel entrance and the outer channel. The CFD predictions also showed the decrease of the loss coefficient as the outer channel blockage increases.

  • PDF

The inertial coefficient for fluctuating flow through a dominant opening in a building

  • Xu, Haiwei;Yu, Shice;Lou, Wenjuan
    • Wind and Structures
    • /
    • 제18권1호
    • /
    • pp.57-67
    • /
    • 2014
  • For a building with a dominant windward wall opening, the wind-induced internal pressure response can be described by a second-order non-linear differential equation. However, there are two ill-defined parameters in the governing equation: the inertial coefficient $C_I$ and the loss coefficient $C_L$. Lack of knowledge of these two parameters restricts the practical use of the governing equation. This study was primarily focused on finding an accurate reference value for $C_I$, and the paper presents a systematic investigation of the factors influencing the inertial coefficient for a wind-tunnel model building including: opening configuration and location, wind speed and direction, approaching flow turbulence, the model material, and the installation method. A numerical model was used to simulate the volume deformation under internal pressure, and to predict the bulk modulus of an experimental model. In considering the structural flexibility, an alternative approach was proposed to ensure accurate internal volume distortions, so that similarity of internal pressure responses between model-scale and full-scale building was maintained. The research showed 0.8 to be a reasonable standard value for the inertial coefficient.

공조용 소음기의 성능시험 평가 및 분석 (ISO 7235) (Evaluation and analysis of the acoustic performance of ducted silencers based on ISO 7235)

  • 김두훈
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 춘계학술대회논문집
    • /
    • pp.191-196
    • /
    • 2000
  • 본 논문에서는 공조용 소음기에 대한 삽입손실 및 압력손실과 같은 음향성능 평가를 위해 필요한 제반 사항을 ISO 7235에 근거하여 소개하였다. 이를 위해 시험설비의 종류 및 구비조건, 측정방법, 측정시 유의사항 등을 기술하였고, 이로서 공조용 소음기의 보다 정확한 음향성능평가가 이루어지도록 검토 하였다.

  • PDF

합류관에서의 손실과 유량 (Energy Loss and Flow Rate at Junction Pipe)

  • 김명관;권오붕
    • 동력기계공학회지
    • /
    • 제9권4호
    • /
    • pp.39-44
    • /
    • 2005
  • This paper presents the study of flows at T-junction pipe with orifices. Experiments were carried out for several flow rates, orifice sizes, and pressure differences. Numerical simulations were also done to get more data for the wide range of flow rates. Experimental results and numerical ones are in a good agreement. Due to the effect of T-junction part, the flow rates at the lateral pipe are greater than those at straight pipe for the same pressure differences. When orifices were added, the effects of T-junction part on the ratio of flow rates and the ratio of loss coefficients reduced.

  • PDF

익렬 통로 내의 2차유동 및 손실에 관한 실험 연구 (An experimental study on the secondary flow and losses in turbine cascades)

  • 정양범;신영호;김상현
    • 대한기계학회논문집B
    • /
    • 제22권1호
    • /
    • pp.12-24
    • /
    • 1998
  • The paper presents the mechanism of secondary flows and the associated total pressure losses occurring in turbine cascades with turning angle of about 127 and 77 degree. Velocity and pressure measurements are taken in seven traverse planes through the cascade passage using a prism type five hole probe. Oil-film flow visualization is also conducted on blade and endwall surfaces. The characteristics of the limiting streamlines show that the three dimensional separation is an important flow feature of endwall and blade surfaces. The larger turning results in much stronger contribution of the secondary flows to the loss developing mechanism. A large part of the endwall loss region at downstream pressure side is found to be very thin when compared to that of the cascade inlet and suction side endwall. Evolution of overall loss starts quite early within the cascade and the rate of the loss growth is much larger in the blade of large turning angle than in the blade of small turning angle.

원형 파일 방파제에 의한 반사율과 투과율 (Reflection and Transmission Coefficients by a Circular Pile Breakwater)

  • 조일형;고혁준
    • 한국해안해양공학회지
    • /
    • 제19권1호
    • /
    • pp.38-44
    • /
    • 2007
  • Bennet 등(1992)이 제안한 수학적 모델을 사용하여 원형 파일 방파제에 의한 반사율과 투과율을 살펴보았다. 파가 파일 방파제를 통과하면서 갑작스런 단면형상의 변화로 박리현상이 발생하며 이로 인하여 파 에너지의 일부분이 소멸된다. 따라서 수학적 모델의 신뢰성을 높이기 위해서는 에너지 손실계수를 정확히 산정하는 것이 중요하다. 본 연구에서는 FLUENT 상용코드를 사용하여 2차원 난류유동을 해석하고 파일 방파제 전후의 압력차로부터 에너지 손실계수를 구하였다. 에너지 손실계수는 공극률의 함수이며, 둘 사이의 관계식을 제안하였다. 손실계수 산정식의 타당성을 검증하기 위하여 수리모형실험결과와 비교하였다. 4가지 공극률에 대하여 반사율과 투과율을 비교한 결과 해석결과와 모형실험결과는 잘 일치하고 있음을 확인하였다.

케이싱 형상 변화가 소형 터보압축기 성능에 미치는 영향 (Effects of Casing Shape on the Performance of a Small-Size Turbo-Compressor)

  • 김동원;김윤제
    • 설비공학논문집
    • /
    • 제14권12호
    • /
    • pp.1031-1038
    • /
    • 2002
  • The effects of casing shape on the performance and interaction between the impeller and casing in a small-size turbo-compressor are investigated. Numerical analysis is conducted for the compressor with circular and single volute casings from inlet to discharge nozzle. In order to predict the flow pattern inside the entire impeller, vaneless diffuer and casing, calculations with multiple frames of reference method between the rotating and stationery parts of the domain are carried out. For compressible turbulent flow fields, the continuity and three-dimensional time-averaged Wavier-Stokes equations are employed. To evaluate the performance of two types of casings, the static pressure and loss coefficients are obtained with various flow rates. Also, static pressure distributions around casings are studied for different casing shapes, which are very important to predict the distribution of radial load. To prove the accuracy of numerical results, measurements of static pressure around casing and pressure difference between the inlet and outlet of the compressor are peformed for the circular casing. Comparisons of these results between the experimental and numerical analyses are conducted, and reasonable agreement is obtained.

Effects of Casing Shape on the Performance of a Small-sized Centrifugal Compressor

  • Kim, D.W.;Kim, H.S.;Kim, Youn-J.
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제11권3호
    • /
    • pp.132-139
    • /
    • 2003
  • The effects of casing shapes on the performance and the interaction between an impeller and a casing in a small-sized centrifugal compressor are investigated. Especially, numerical analyses are conducted for the centrifugal compressor with both a circular casing and a volute one. The optimum design for each element (i.e., impeller, diffuser and casing) is important to develop an efficient and compact compressor using alternative refrigerant as working fluids. Typical rotating speed of the compressor is in the range of 40,000∼45,000 rpm. The impeller has backswept blades due to tip clearance and a vane diffuser has wedge type. In order to predict the flow pattern inside an entire impeller, vaneless diffuser and casing, calculations with multiple frames of reference method between the rotating and stationery parts of the domain are carried out. For computations of compressible turbulent flow fields, the continuity and time-averaged Navier-Stokes equations are employed. To evaluate the performance of two types of casings, the static pressure recovery and loss coefficients are obtained for various flow rates. Also, static pressure distributions around casings are studied for different casing shapes, which are very important to predict the distribution of radial load. The static pressure around the casing and pressure difference between the inlet and outlet of the compressor are measured for the circular casing.

An Analysis of Attenuation Effect of Pressure Head Using an Air Chamber

  • Lee, Jae-Soo;Yoon, Yong-Nam;Kim, Joong-Hoon
    • Korean Journal of Hydrosciences
    • /
    • 제7권
    • /
    • pp.77-86
    • /
    • 1996
  • An air chamber is design to keep the pressure from exceeding a predetermined value, or to prevent low pressures and colum separation. Therefore, it can be used to protect against rapid transients in a pipe system following abrupt pump stoppage. In this research, an air chmber was applied to a hypthetical pipe system to analyze attenuation effect of pressure head for different air volumes, locations, chamber areas, coefficients of orifice loss and pollytropic exponents. With an increase of air volume, the maximum pressure head at pump site is decreased and the minimum pressure head is imcreased. For different locations and areas of the chamber, the attenuation effects do not show much difference. Also, as the orifice loss coefficient increases, the maximum pressure head is decreased. For different polytropic exponents, isothermal process shows lower maximum pressure head than that of the adiabatic process.

  • PDF

플러그 밸브의 포트형상 변화에 따른 유동특성 연구 (A study on the flow characteristics in a plug valve with various port shapes)

  • 최근우;박권종;김윤제
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2000년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.259-264
    • /
    • 2000
  • The functions of the plug valve are the control of flow rate as well closing and opening pipe lines. Analyses on the flow characteristics in plug valve port are required to improve the performance and safety at severe operating conditions such as high-pressure and high-temperature. In this study, numerical analyses are carried out with varying the opening rate (fraction of the full open to close) of the valve and the shapes of valve Uk: straight, convex, concave and mixed shapes. The parameters influencing the flow characteristics in the valve are the discharge coefficient( $C_v$) and the resistance coefficient( K). Therefore, the distributions of static pressure, velocity vector and stream lines are investigated, and $C_v$ and K are calculated in each opening rate and shape. In case of full open, the static pressure passed through the valve port has almost been recovered. However, in case of other opening rates, the pressure does not permanently regained due to pressure drop leading to loss. This phenomenon in each shape of the valve shows the different behaviors. Calculation results show that the mixed shape has the best flow attribute.

  • PDF