• Title/Summary/Keyword: Pressure Drop Analysis

Search Result 681, Processing Time 0.031 seconds

Heat Transfer and Fluid Flow Evaluation of Microchannel Waterblock with Pass Variations (패스변화에 따른 워터블록의 열전달 및 유동특성 평가)

  • Choi, Jin-Tae;Kwon, Oh-Kyung;Choi, Mi-Jin;Yun, Jae-Ho;Kim, Yong-Chan
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.1135-1140
    • /
    • 2009
  • The present study has been studied on a thermal and flow characteristic of the microchannel waterblock with pass variations in 8 samples. Results of a numerical analysis using the CFX-11 were compared with results of an experiment. Numerical analysis and experiment were conducted under an input power of 150 W, inlet temperature of $35^{\circ}C$ and mass flow rates of $0.7{\sim}2.0\;kg/min$. The numerical results showed reasonably good agreement with the experimental results within about $3{\sim}5%$. Also, the numerical results showed that the sample 2 types with the 2 pass gave better performance than the sample 1 types with the 1 pass from the viewpoints of heat transfer and pressure drop.

  • PDF

Thermal Performance Analysis of a Shell-and-Tube Heat Exchanger with Plate Fins of Various Shape (다양한 형상의 판형 휜을 장착한 원통다관형 열교환기의 열성능 해석)

  • 신지영;손영석
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.4
    • /
    • pp.648-656
    • /
    • 2004
  • In this study, a highly efficient shell-and-tube heat exchanger with plate fins is considered to improve thermal performance of the conventional shell-and-tube heat exchanger. This type of shell-and-tube heat exchanger with plate fins of various shape is simulated three-dimensionally using a commercial thermal-fluid analysis code. CFX4.4. The effect of the shape of the plate fin on heat transfer characteristics is also investigated by the simulation. Plate fins of four different shapes. plane, plane-slit. wave. and wave-slit fins, are considered. The flow fields, pressure drop and heat transfer characteristics in the heat exchanger are calculated. It is proved that the shell-and-tube heat exchanger with plate fins is superior to the conventional shell-and-tube heat exchanger without plate fins in terms of heat transfer. The shape of the plate fin is important in the performance of a heat exchanger such as heat transfer and pressure drop.

Analysis of Mixed Convection Heat Transfer in Arbitrarily Shaped Flat Tubes (임의형상을 갖는 납작관에서의 혼합대류 열전달 해석)

  • 박희용;박경우;이상철
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.5
    • /
    • pp.398-410
    • /
    • 2001
  • The flow and heat transfer characteristics for three-dimensional mixed convection flows in a radiator flat tube with U--shaped grooves are analyzed numerically. The flow and temperature fields are calculated by using the modified SIMPLE algorithm for irregular geometry. One tube specification among the various flat tube exchangers is recommended by considering the heat transfer and pressure drop. The effects of variation of coolant flow conditions and external air conditions on the flow and the thermal characteristics for the selected tube are investigated. the results show that inlet velocity of coolant flow is the very important factor in heat transfer and pressure drop, and top side is better position than the others as fin cleave to tube.

  • PDF

Numerical Analysis of Fluid Flow and Heat Transfer in a Parallel-Plate Channel with Transverse Fins (수직휜이 부착된 평행평판 채널내의 유동 및 열전달에 관한 수치해석)

  • Hwang, K.Y.;Kim, H.J.;Moh, J.H.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.7 no.4
    • /
    • pp.642-653
    • /
    • 1995
  • An analysis is made of the laminar fluid flow and heat transfer characteristics in a parallel-plate channel to whose walls are fitted with a series of equidistant staggered fins placed transversely to the flow direction. The governing equations are solved numerically by a finite-volume method for elliptic flows. Based on the obtained solutions of flow and temperature fields, the effects of Reynolds number and various geometric parameters on the heat transfer performance and pressure drop are evaluated. A comparson of the heat transfer characteristics between the channels with and without staggered fins is also made.

  • PDF

Thermal and Flow Characteristic of the Microchannel Waterblock with Flow Distributions (미세채널 워터블록의 채널 내 유량분배에 따른 열유동 특성)

  • Choi, Mi-Jin;Kwon, Oh-Kyung;Cha, Dong-An;Yeun, Jae-Ho
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.269-274
    • /
    • 2008
  • The present study has been studied on a thermal and flow characteristic of the microchannel waterblock with flow distributions in each channels. Results of a numerical analysis using the CFX-11 are compared with results of an experiment. Numerical analysis and experiment are conducted under a heat transfer rate of 150W, inlet temperature of $20^{\circ}C$ and mass flow rates of $0.7{\sim}2.0\;kg$/min. Base temperature and pressure drop are investigated with standard deviations of mass flow rates in each channels of samples at 0.7 kg/min.

  • PDF

STUDY ON CALCULATION OF FLOW COEFFICIENT BY CFD FOR VALVE IN NUCLEAR POWER PLANT (전산유체역학을 활용한 원전용 밸브의 유량계수 산출에 대한 연구)

  • Kim, J.H.;Lee, J.H.
    • Journal of computational fluids engineering
    • /
    • v.21 no.4
    • /
    • pp.54-60
    • /
    • 2016
  • The valve used in nuclear power plant must be qualified but the limitation of the test facility leads to use the numerical analysis. The flow coefficient is calculated with the consideration of the pressure, velocity and geometry. And the flow coefficient is the important physical property which is prepared using experiment or analysis by valve manufacturer. In this study, the analysis model was made according to ISA 75.02.01 and the mass flow rate and pressure drop ratio was calculated. The model of the expansion factor was applied to the simulation result and the pressure drop ratio at the start of the choked flow in the valve was found. With the simulation result, the consideration was performed that the expansion factor is the important physical property to the system engineer in addition to the flow coefficient.

KSR-III 매니폴드의 추진제 분사균일성 해석

  • Cho, Won-Kook
    • Aerospace Engineering and Technology
    • /
    • v.1 no.2
    • /
    • pp.113-122
    • /
    • 2002
  • A numerical analysis on the uniformity of propellant injection velocity of KSR-III has been carried out to give design improvements. Injector holes were approximated as porous media with the same pressure drop . The injection velocity is higher at the opposite side of the inlet for both LOX and fuel due to the static pressure rise in the stagnation region. Flow passages at the vertical circular plate in the LOX dome increase the uniformity of LOX injection. Little change was observed in the injection uniformity and pressure drop for the slanted LOX passage. Also provided were the O/ F ratio distributions from the oxidizer/ fuel injection velocity analysis.

  • PDF

Proposal of Analyis Method for PICV Characteristics Curve Using CFD in Hydronic System (밀폐형 수배관시스템에서 CFD를 활용한 복합밸브 특성곡선 해석 방법 제안)

  • Do, Gahyeon;Kim, Jinho;Park, Woopyeng;Min, Joonki
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.17 no.2
    • /
    • pp.20-29
    • /
    • 2021
  • In this study, it is proposed that an analysis method using charatersistics curve of PICV in the CFD simulation for hydronic system. From the results, the pressure drop characteristics appeared in the region of PICV at a specified flow rate. And the CFD results are in good agreement with the experimental results. Proposed analysis method is proved that the characteristics of PICV applied to the hydronic system were properly applied in the flow analysis. This result can be applied to PICV in the complex hydronic systems. Therefore, the optimal selection of PICV in hydronic system contribute the building energy saving.