• 제목/요약/키워드: Pressure Driven Analysis

검색결과 191건 처리시간 0.034초

궤적 구동 미세입자 분사가공 시 표면 형상 가공 특성 및 가공 조건 (Surface-shape Processing Characteristics and Conditions during Trajectory-driven Fine-particle injection Processing)

  • 이형태;황철웅;이세한;왕덕현
    • 한국기계가공학회지
    • /
    • 제20권10호
    • /
    • pp.19-26
    • /
    • 2021
  • In fine-particle injection processing, hard fine particles, such as silicon carbide or aluminum oxide, are injected - using high-pressure air, and a small amount of material is removed by applying an impact to the workpiece by spraying at high speeds. In this study, a two-axis stage device capable of sequence control was developed to spray various shapes, such as circles and squares, on the surface during the micro-particle jetting process to understand the surface-shape micro-particle-processing characteristics. In the experimental device, two stepper motors were used for the linear movement of the two degree-of-freedom mechanism. The signal output from the microcontroller is - converted into a signal with a current sufficient to drive the stepper motor. The stepper motor rotates precisely in synchronization with the pulse-signal input from the outside, eliminating the need for a separate rotation-angle sensor. The major factors of the processing conditions are fine particles (silicon carbide, aluminum oxide), injection pressure, nozzle diameter, feed rate, and number of injection cycles. They were identified using the ANOVA technique on the design of the experimental method. Based on this, the surface roughness of the spraying surface, surface depth of the spraying surface, and radius of the corner of the spraying surface were measured, and depending on the characteristics, the required spraying conditions were studied.

초등학교 교과서 속 해륙풍에 기반한 바람이 부는 이유에 대한 개념적 고찰 (The Conceptual Study on Driving Factors for Wind based on Land and Sea Breeze in the Elementary Textbooks)

  • 이규호
    • 한국초등과학교육학회지:초등과학교육
    • /
    • 제34권4호
    • /
    • pp.486-501
    • /
    • 2015
  • In the elementary school science curriculum, wind is one of the most important concept. In particular, land and sea breeze has been a key example to deliver how wind is driven, and thus its model experiments have been used to help students understand causes of wind. Here we compare causes and explanations for wind and land and sea breeze between textbooks in colleges and elementary schools to examine any potential improvement for the contents. In addition, we conducted survey to examine how pre-service teachers understand land and sea breeze, and convection box experiment used in elementary school textbooks is useful to understand land and sea breeze. Based on the comparison, we find that college level textbook explains the cause of wind as atmospheric pressure difference while elementary school textbooks explain them differently according to curriculums. In the textbooks, there are a difference in the way described for land and sea breeze. Analysis of questionnaire indicate that pre-service teachers understood land and sea breeze correctly, and they selected the convection box experiment in 2009 curriculum textbooks as the most suitable one. Explanations and experiments for land and sea breeze in the textbooks have been revised as the modification of elementary school curriculums. We expect this study helps to deliver more solid contents for wind and land and sea breeze in the upcoming new curriculum.

재난 대응용 유압 주행 시스템의 해석적 접근을 통한 설계 타당성 검토 (Design feasibility study by analytical approach for a disaster response hydraulic driving system)

  • 이근호;노대경;이대희;박성수;장주섭
    • 드라이브 ㆍ 컨트롤
    • /
    • 제15권2호
    • /
    • pp.22-31
    • /
    • 2018
  • This study deals with verifying the design feasibility, of an independently driving hydraulic system for disaster response purposes, through an analytical approach. The development target is a system in which four traveling motors are driven independently, and must be easy to operate even under conditions in which different loads are applied to the traveling motors. In order to be suitable for complex work, the hydraulic system was designed using the main control valve with a pressure compensation function. If we can develop an analytical model that reflects the specifications and functions of the parts through the analysis program, we can verify the validity of the design before we make the prototype. The purpose of this study therefore, is to verify the feasibility of designing an independent drive hydraulic system through the development of an analysis model from the viewpoint of complex work. The analysis program uses Simulation X.

Performance Analysis of an Indoor Heat Exchanger with R-410A for GHP Application

  • Lee, Jong-Ho;Kim, Sung-Soo;Cha, Woo-Ho;Kang, Yong-Tae
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제17권4호
    • /
    • pp.129-134
    • /
    • 2009
  • The objectives of this paper are to study the effects of thermal and geometric conditions on the performance of indoor heat exchangers with R-410A for Gas Engine Driven Heat Pump (GHP) application and to find the optimum design conditions of indoor heat exchangers by parametric analysis for the key parameters. The key parameters are number of tube row, number of tube pipe, fin pitch and transverse tube pitch. In the air side, moisture out of the humid air condenses on the fin surface while the refrigerant (R-410A) boils inside the smooth tube. Therefore this study uses Log Mean Enthalpy Difference (LMHD) method to analyze the heat transfer from the humid air to the refrigerant. This study determines the heat exchanger size, air side/refrigerant side pressure drop and overall heat transfer coefficient. Optimum design conditions for the key parameters are also determined by the parametric analysis. The results show that number of rows and pipes, fin pitch have significant effect on the heat exchanger size. It is also found that the tube length of the louver fin is $17{\sim}30%$ shorter than that of the plate fin.

위기대응 취약성 분석을 통한 광역상수도 연계운영 평가 (Evaluation for conjunctive operation of multi-regional water supply system through risk analysis)

  • 황진수;최태호;홍공현;이두진;구자용
    • 상하수도학회지
    • /
    • 제33권4호
    • /
    • pp.269-279
    • /
    • 2019
  • This study would present a risk analysis method to evaluate stable tap water supply in a multi-regional water supply system and propose a measure for the evaluation of the effect of the conjunctive operation of the multi-regional water supply system using this. Judging from the vulnerability for the crisis response of the entire N. multi-regional water supply system, as compared to the result of Scenario 1 in which no conjunctive pipes were operated, it was found that in Scenario 2, in which conjunctive pipes were partially operated, the vulnerability of crisis response decreased by about 30.6%, and as compared to Scenario 3, the vulnerability of crisis response decreased by 86.2%. In setting a plan for stable tap water supply in N multi-regional water supply system, using the estimated value and the method for the evaluation of the vulnerability of crisis response by pipe, by interval and by line, it is judged that this can be utilized as a basis for the judgment of the evaluation of the operation or the additional installation of conjunctive pipes.

Moving reactor model for the MULTID components of the system thermal-hydraulic analysis code MARS-KS

  • Hyungjoo Seo;Moon Hee Choi;Sang Wook Park;Geon Woo Kim;Hyoung Kyu Cho;Bub Dong Chung
    • Nuclear Engineering and Technology
    • /
    • 제54권11호
    • /
    • pp.4373-4391
    • /
    • 2022
  • Marine reactor systems experience platform movement, and therefore, the system thermal-hydraulic analysis code needs to reflect the motion effect on the fluid to evaluate reactor safety. A moving reactor model for MARS-KS was developed to simulate the hydrodynamic phenomena in the reactor under motion conditions; however, its applicability does not cover the MULTID component used in multidimensional flow analyses. In this study, a moving reactor model is implemented for the MULTID component to address the importance of multidimensional flow effects under dynamic motion. The concept of the volume connection is generalized to facilitate the handling of the junction of MULTID. Further, the accuracy in calculating the pressure head between volumes is enhanced to precisely evaluate the additional body force. Finally, the Coriolis force is modeled in the momentum equations in an acceleration form. The improvements are verified with conceptual problems; the modified model shows good agreement with the analytical solutions and the computational fluid dynamic (CFD) simulation results. Moreover, a simplified gravity-driven injection is simulated, and the model is validated against a ship flooding experiment. Throughout the verifications and validations, the model showed that the modification was well implemented to determine the capability of multidimensional flow analysis under ocean conditions.

Effect of Green Transformational Leadership and Organizational Environmental Culture on Manufacturing Enterprise Low Carbon Innovation Performance

  • Li, Liang;Fuseini, Joseph;Tan, MeiXuen;Sanitnuan, Nuttida
    • Asia Pacific Journal of Business Review
    • /
    • 제6권2호
    • /
    • pp.27-60
    • /
    • 2022
  • Previous studies stated that low carbon innovation performance could be influenced by government regulations and the green market, which is the new trend of consumer consumption in the present time, mainly focusing on external factors. Before study augured that low carbon innovation performance could be driven by internal and external factors of cooperation such as institutional pressure, stakeholder pressure, and innovation resources. However, the study of green transformational leadership and organizational environmental culture on low carbon innovation performance is rare, especially in Chinese manufacturing, as well as the effect of influencing factors of TPB model: environmental attitude, subjective norm, and perceived behavior capability on low carbon innovation performance. Previous studies mostly used the TPB model for predicting individual behavior. This study established a theoretical model combining the TPB model with green transformational leadership and organizational environmental culture of Chinese automobile manufacturing on low carbon innovation performance. This study consists of two sections of research methodology: section 1 related to questionnaire design and data collection. We established a questionnaire and distributed it online, targeting responses from the managerial level working in Chinese automobile manufacturing. Eventually, 155 valid questionnaires were used for analysis. Section 2 involved data analysis using statistical software. Reliability and data validity was examined by reliability analysis and factor analysis. Correlations and convergent validity analyses were applied, and structural equation modeling was conducted to test the proposed hypotheses. The findings indicated that green transformational leadership, organizational environmental culture, and essential factors of TPB model; environmental attitude, subjective norm and perceived behavior capability positively affect low carbon innovation performance. In addition, the indirect effect of green transformational leadership was tested and found that organizational environmental culture and TPB factors mediated the relationship between transformational leadership and low carbon innovation performance.

오차수정법을 도입한 비압축성 유체유동 해석을 위한 수치적 방법 (Numerical algorithm with the concept of defect correction for incompressible fluid flow analysis)

  • 권오붕
    • 대한기계학회논문집B
    • /
    • 제21권3호
    • /
    • pp.341-349
    • /
    • 1997
  • The characteristics of defect correction method are discussed in a sample heat conduction problem showing the numerical solution of the error correction equation can predict the error of the numerical solution of the original governing equation. A way of using defect correction method combined with the existing algorithm for the incompressible fluid flow, is proposed and subsequently tested for the driven square cavity problem. The error correction equations for the continuity equation and the momentum equations are considered to estimate the errors of the numerical solutions of the original governing equations. With this new approach, better velocity and pressure fields can be obtained by correcting the original numerical solutions using the estimated errors. These calculated errors also can be used to estimate the orders of magnitude of the errors of the original numerical solutions.

Crossflow Fan 주변의 유동 (Flows around crossflow fan)

  • 김재원;정윤영
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집E
    • /
    • pp.678-683
    • /
    • 2001
  • The present work has carried out experimental study on a cross-flow fan system with a simplified vortex wall scroll casing. A cross-flow fan test rig was constructed to obtain pressure rise and volume flow rate for various fan operating conditions. The performance estimation is using a wind tunnel with a motor driven damper for flow rate control and flows are quantitatively visualized by light scattering system with a pulsed laser. Min focus on the visualization is finding a eccentric vortex inside a fan which is a major factor reducing fan efficiency. Comprehensive engineering data are prepared for industrial applications and show a good agreement with a prior work by experimental measurements.

  • PDF

가진된 덤프 연소기 내에서의 비예혼합 화염 거동 (Behavior of Non-premixed Flame Front in an Acoustically-Driven Dump Combustor)

  • 박정규;신현동
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2000년도 제20회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.142-151
    • /
    • 2000
  • Dump combustor is a combustor having a dump plane to make coherent structures. A non-premixed flame dump combustor of simple geometry was constructed. We conducted basic experiments such as frequency response on the combustor to confirm the characteristics of the phenomena as a typical dump combustion and unsteady combustion. Furthermore we visualized the flame front behavior by CH chemiluminescence and high speed motion analysis. In spite of the lack of another data such as velocity, species concentration and temperature, the results showed not only the periodic motion of flame front but the ignition process of vortex ring flame. Also we could check out Rayleigh criterion by combining the visualization data with the pressure data.

  • PDF