• Title/Summary/Keyword: Pressure Drag Force Coefficient

Search Result 51, Processing Time 0.025 seconds

Galloping analysis of roof structures

  • Zhang, Xiangting;Zhang, Ray Ruichong
    • Wind and Structures
    • /
    • v.6 no.2
    • /
    • pp.141-150
    • /
    • 2003
  • This paper presents galloping analysis of multiple-degree-of-freedom (MDOF) structural roofs with multiple orientations. Instead of using drag and lift coefficients and/or their combined coefficient in traditional galloping analysis for slender structures, this study uses wind pressure coefficients for wind force representation on each and every different orientation roof, facilitating the galloping analysis of multiple-orientation roof structures. In the study, influences of nonlinear aerodynamic forces are considered. An energy-based equivalent technique, together with the modal analysis, is used to solve the nonlinear MDOF vibration equations. The critical wind speed for galloping of roof structures is derived, which is then applied to galloping analysis of roofs of a stadium and a high-rise building in China. With the aid of various experimental results obtained in pertinent research, this study also shows that consideration of nonlinear aerodynamic forces in galloping analysis generally increases the critical wind speed, thus enhancing aerodynamic stability of structures.

Laminar Flow over Two Spheres in a Tandem Arrangement (직렬로 배열된 두 개의 구를 지나는 층류 유동)

  • Kim Dong-Joo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.5 s.248
    • /
    • pp.480-488
    • /
    • 2006
  • Numerical simulations of flow over two spheres placed in a tandem arrangement are conducted to investigate the effect of the inter-sphere spacing on the flow characteristics. The Reynolds numbers considered are 100, 250, 300 and 425, corresponding to steady axisymmetric, steady planar-symmetric, unsteady planar-symmetric, and unsteady asymmetric flows, respectively, in the case of a single sphere. For small inter-sphere spacings, the flow past two spheres is more stable than that past a single sphere. For example, with the spacing of the sphere radius, the flow is steady axisymmetric up to Re=300. However, for relatively large spacings, the flow past two spheres becomes unstable and vortex shedding takes place even at Re=250. The drag coefficient of the rear sphere decreases significantly with decreasing inter-sphere spacing due to reduction of the stagnation pressure, thus being smaller than that of the front sphere. Also, the rear sphere shows large fluctuations of the lift force as compared to the front one in the case of unsteady flow.

Wind tunnel study of wake-induced aerodynamics of parallel stay-cables and power conductor cables in a yawed flow

  • Jafari, Mohammad;Sarkar, Partha P.
    • Wind and Structures
    • /
    • v.30 no.6
    • /
    • pp.617-631
    • /
    • 2020
  • Wake-induced aerodynamics of yawed circular cylinders with smooth and grooved surfaces in a tandem arrangement was studied. This pair of cylinders represent sections of stay-cables with smooth surfaces and high-voltage power conductors with grooved surfaces that are vulnerable to flow-induced structural failure. The study provides some insight for a better understanding of wake-induced loads and galloping problem of bundled cables. All experiments in this study were conducted using a pair of stationary section models of circular cylinders in a wind tunnel subjected to uniform and smooth flow. The aerodynamic force coefficients and vortex-shedding frequency of the downstream model were extracted from the surface pressure distribution. For measurement, polished aluminum tubes were used as smooth cables; and hollow tubes with a helically grooved surface were used as power conductors. The aerodynamic properties of the downstream model were captured at wind speeds of about 6-23 m/s (Reynolds number of 5×104 to 2.67×105 for smooth cable and 2×104 to 1.01×105 for grooved cable) and yaw angles ranging from 0° to 45° while the upstream model was fixed at the various spacing between the two model cylinders. The results showed that the Strouhal number of yawed cable is less than the non-yawed case at a given Reynolds number, and its value is smaller than the Strouhal number of a single cable. Additionally, compared to the single smooth cable, it was observed that there was a reduction of drag coefficient of the downstream model, but no change in a drag coefficient of the downstream grooved case in the range of Reynolds number in this study.

Computational Fluid Dynamics of the aerodynamic characteristics for Flying Wing configuration with Flaperon (플래퍼론이 전개된 플라잉윙 형상의 공력 특성에 대한 전산유동해석)

  • Ko, Arim;Chang, Kyoungsik;Park, Changhwan;Sheen, Dongjin
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.5
    • /
    • pp.32-38
    • /
    • 2019
  • The flying wing configuration with high sweep angles and rounded leading edge represent a complex flow of structures by the leading edge vortex. For control of the tailless flying wing configuration with unstable directional stability, flaperon is used. In this study, we conducted numerical simulations for a non-slender flying wing configuration with a rounded leading edge and analyzed the effect of the sideslip angle and flaperon. Through aerodynamic coefficient analysis, it was found that the effect of AoS on lift and drag coefficient was minimal and the side force and moment coefficient were markedly influenced by AoS. As the sideslip angle increased, the pitch break, which is related to the pitching moment coefficient, was delayed. Through stability analysis, the directional and lateral static stability of the flying wing configuration were increased by flaperon. Also, the structure and behavior of the leading edge vortex were analyzed by observing the contour of the pressure coefficient and the skin friction line.

Influence of latitude wind pressure distribution on the responses of hyperbolodial cooling tower shell

  • Zhang, Jun-Feng;Ge, Yao-Jun;Zhao, Lin
    • Wind and Structures
    • /
    • v.16 no.6
    • /
    • pp.579-601
    • /
    • 2013
  • Interference effects are of considerable concern for group hyperboloidal cooling towers, but evaluation methods and results are different from each other because of the insufficient understanding on the structure behavior. Therefore, the mechanical performance of hyperboloidal cooling tower shell under wind loads was illustrated according to some basic properties drawn from horizontal rings and cantilever beams. The hyperboloidal cooling tower shell can be regarded as the coupling of horizontal rings and meridian cantilever beams, and this perception is beneficial for understanding the mechanical performance under wind loads. Afterwards, the mean external latitude wind pressure distribution, CP(${\theta}$), was artificially adjusted to pursue the relationship between different CP(${\theta}$) and wind-induced responses. It was found that the maximum responses in hyperboloidal cooling tower shell are primarily dominated by the non-uniformity of CP(${\theta}$) but not the local pressure amplitude CP or overall resistance/drag coefficient CD. In all the internal forces, the maximum amplitude of meridian axial tension shows remarkable sensitivity to the variation of CP(${\theta}$) and it's also the controlling force in structure design, so it was selected as an indicator to evaluate the influence of CP(${\theta}$) on responses. Based on its sensitivity to different adjustment parameters of CP(${\theta}$), an comprehensive response influence factor, RIF, was deduced to assess the meridian axial tension for arbitrary CP(${\theta}$).

CFD Analysis of EFD-CFD Workshop Case 3 using Commercial and Open Source CFD codes (상용 및 오픈소스 CFD 코드를 이용한 EFD-CFD 워크샵 Case 3 해석)

  • Kim, Jong Rok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.3
    • /
    • pp.241-251
    • /
    • 2017
  • Computational fluid dynamics analysis was performed for the case 3 of the EFD-CFD workshop. Solvers were used for three commercial CFD codes(Star-CCM+, Fluent and CFX) and an open source CFD code(SU2). The grid were generated four types depending on the total cells using commercial grid generation code(Pointwise). Mach number of 0.4 and 0.8, 2 degree angle of attack and Mach number of 0.9, 1 degree angle of attack were calculated. Similar pressure coefficient curve and normal force coefficient were showed from the coarse grid to fine grid of four codes. But there is a difference in the drag coefficient. The position of the shock wave was predicted forward as the discretization order increased in calculations using Star-CCM+ and Fluent. The computation time to converge, Fluent, Star-CCM +, CFX are in order, and SU2 takes much time to converge.

Shape and Spacing Effects on Curvy Twin Sail for Autonomous Sailing Drone (무인 해상 드론용 트윈 세일의 형태와 간격에 관한 연구)

  • Pham, Minh-Ngoc;Kim, Bu-Gi;Yang, Changjo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.7
    • /
    • pp.931-941
    • /
    • 2020
  • There is a growing interest this paper for ocean sensing where autonomous vehicles can play an essential role in assisting engineers, researchers, and scientists with environmental monitoring and collecting oceanographic data. This study was conducted to develop a rigid sail for the autonomous sailing drone. Our study aims to numerically analyze the aerodynamic characteristics of curvy twin sail and compare it with wing sail. Because racing regulations limit the sail shape, only the two-dimensional geometry (2D) was open for an optimization. Therefore, the first objective was to identify the aerodynamic performance of such curvy twin sails. The secondary objective was to estimate the effect of the sail's spacing and shapes. A viscous Navier-Stokes flow solver was used for the numerical aerodynamic analysis. The 2D aerodynamic investigation is a preliminary evaluation. The results indicated that the curvy twin sail designs have improved lift, drag, and driving force coefficient compared to the wing sails. The spacing between the port and starboard sails of curvy twin sail was an important parameter. The spacing is 0.035 L, 0.07 L, and 0.14 L shows the lift coefficient reduction because of dramatically stall effect, while flow separation is improved with spacing is 0.21 L, 0.28 L, and 0.35 L. Significantly, the spacing 0.28 L shows the maximum high pressure at the lower area and the small low pressure area at leading edges. Therefore, the highest lift was generated.

Comparison Of CATHARE2 And RELAP5/MOD3 Predictions On The BETHSY 6.2% TC Small-Break Loss-Of-Coolant Experiment (CATHARE2와 RELAP5/MOD3를 이용한 BETHSY 6.2 TC 소형 냉각재상실사고 실험결과의 해석)

  • Chung, Young-Jong;Jeong, Jae-Jun;Chang, Won-Pyo;Kim, Dong-Su
    • Nuclear Engineering and Technology
    • /
    • v.26 no.1
    • /
    • pp.126-139
    • /
    • 1994
  • Best-estimate thermal-hydraulic codes, CATHARE2 V1.2 and RELAP5/MOD3, hate been assessed against the BETHSY 6.2 tc six-inch cold leg break loss-of-coolant accident (LOCA) test. Main objective is to analyze the overall capabilities of the two codes on physical phenomena of concern during the small break LOCA i.e. two-phase critical flow, depressurization, core water level de-pression, loop seal clearing, liquid holdup, etc. The calculation results show that the too codes predict well both in the occurrences and trends of major two-phase flow phenomena observed. Especially, the CATHARE2 calculations show better agreements with the experimental data. However, the two codes, in common, show some deviations in the predictions of loop seal clearing, collapsed core water level after the loop seal clearing, and accumulator injection behaviors. The discrepancies found from the comprision with the experimental data are larger in the RELAP5 results than in the CATHARE2. To analyze the deviations of the two code predictions in detail, several sensitivity calculations have been performed. In addition to the change of two-phase discharge coefficients for the break junction, fine nodalization and some corrections of the interphase drag term are made. For CATHARE2, the change of interphase drag force improves the mass distribution in the primary side. And the prediction of SG pressure is improved by the modification of boundary conditions. For RELAP5, any single input change doesn't improve the whole result and it is found that the interphase drag model has still large uncertainties.

  • PDF

A Study on the Flow Control around a Circular Cylinder by Control rods (제어봉을 부착한 원형실린더 주위 유동제어에 관한 연구)

  • Gim, Ok-Sok;Lee, Gyoung-Woo;Cho, Dae-Hwan
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2007.05a
    • /
    • pp.169-174
    • /
    • 2007
  • The purpose in having a control rod an a buoy system is to control the motion of it. The system may be composed entirely af a single circular cylinder finder and a lang mooring anchor cable. A control rod has one function to perform in meeting its purpose, and that is to develop a control force in consequence of its orientation and movement relative to the water. The forces and moments generated as a result of the effects of mutual interference, then determine the stability characteristics of the body. In this paper, the study of control-rod-attached buoy's 2-dimensional section was accomplished. model tests and numerical simulations had been carried out with different diameters of control rods. and varying the Reynolds number $Re=5,000{\sim}25,000$ based an the cylinder diameter(D=50mm) to. predict the performance af the body and the 2 frame particle tracking method had been used to obtain the velocity distribution in the flaw field 50mm circular cylinder had been used during the whale experiments and measured results had been compared with each other.

  • PDF

Wind Tunnel Test Study on the Characteristics of Wind-Induced Responses of Tall Buildings with Openings (중공부(中空部)를 가진 고층건축물(高層建築物)의 풍응답(風應答) 특성(特性)에 관한 풍동실험(風洞實驗) 연구(硏究))

  • Kim, Dong Woo;Kil, Yong Sik;Ha, Young Cheol
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.4 s.77
    • /
    • pp.499-509
    • /
    • 2005
  • The excessive wind-induced motion of tall buildings most frequently result from vortex-shedding-induced across-wind oscillations. This form of excitation is most pronounced for relatively flexible, lightweight, and lightly damped high-rise buildings with constant cross-sections. This paper discusses the aerodynamic means ofmitigating the across-wind vortex shedding induced in such situations. Openings are added in both the drag and lift directions in the buildings to provide pressure equalization. Theytend to reduce the effectiveness of across-wind forces by reducing their magnitudes and disrupting their spatial correlation. The effects of buildings with several geometries of openings on aerodynamic excitations and displacement responses have been studied for high-rise buildings with square cross-sections and an aspect ratio of 8:1 in a wind tunnel. High-frequency force balance testshave been carried out at the Kumoh National University of Technology using rigid models with 24 kinds of opening shapes. The measured model's aerodynamic excitations and displacement were compared withthose of a square cylinder with no openings to estimate the effectiveness of openings for wind-induced oscillations. From these results, theopening shape, size, and location of buildings to reduce wind-induced vortex shedding and responses were pointed out.