• 제목/요약/키워드: Pressure Drag

검색결과 501건 처리시간 0.028초

하이브리드탄의 항력 및 유동해석 (A Drag and Flow Characteristics around the Hybrid Projectile)

  • 이상길;이동현
    • 한국군사과학기술학회지
    • /
    • 제3권2호
    • /
    • pp.23-34
    • /
    • 2000
  • Three dimensional, compressible, mass weighted averaging of Favre, Navier-Stokes system with k-$\varepsilon$ turbulence, is numerically discretized to compute three dimensional multiple jet interaction flow fields for a hybrid projectile containing three rocket motors in the ogive section. Numerical flow field computations have been made for angled nose jets and rockets at supersonic speed using multiblock structured grid. The jet conditions include very high jet to free stream pressure ratio and high temperature. It is shown that the strength of nozzle stagnation pressure affects the flow field near the side nozzle and the high stagnation pressure increases total amount of drag by a few percent. However, minor drag loss due to the pressure drag might be fully overcomed by an additional axial thrust. The results of present study can be applied for the design of future hybrid projectile.

  • PDF

지역냉방시스템에의 적용을 위한 마찰저항감소 첨가물 특성 연구 (Characteristics of Drag Reduction Additives in the Application of District Cooling System)

  • 윤석만;김종보
    • 설비공학논문집
    • /
    • 제12권3호
    • /
    • pp.251-257
    • /
    • 2000
  • District heating and cooling systems offer highly efficient energy utilization and maintenance by centralizing heat management. More pumping power, however, is required because the water has to travel long distance from heat source to the users. In the present study, a trace of drag reduction additives is added to the District Cooling system to achieve a significant drag reduction and save pumping power. Water-soluble polymers, surfactants, and environment-friendly degradable polymers are used as effective drag reducing additives. Time dependent percent drag reductions are compared for various additive solutions at 100 wppm concentration for different water velocity. Without as an anionic surfactant, copolymer was most effective in percent drag reduction. It is found that there exists an optimal condition when copolymer is mixed with SDS. An environment-friendly degradable polymer, xanthan gum, is found to be a significant drag reduction additive. Ice slurry systems, can give less pressure drops compared with chilled water system for certain condtions. Drag reduction additives were also effective for the ice slurry system.

  • PDF

전단박화유체의 수직상향 난류유동시 저항감소에 관한 연구 (A Study on the Drag Reduction of Shear Thinning Fluid with Vertical upward Turbulent Flow)

  • 차경옥;김봉각;김재근
    • 대한기계학회논문집B
    • /
    • 제22권12호
    • /
    • pp.1647-1656
    • /
    • 1998
  • The drag reduction is the phenomenon that occurs only when the shear stress from the wall of pipe is beyond the critical point. The drag reduction increase as the molecular weight, concentration of the polymer and Reynolds number increase, but it is limited by Virk's maximum drag reduction asymptote. Because of the strong shear force for the polymer on the turbulent flow, the molecular weight and the drag reduction do not decrease. Such mechanical degradation of the polymer occurs in all polymer solvent systems. This paper is to identify and develop high performance polymer additives for fluid transportations with the benefits of turbulent drag reduction. In addition, drag reduction in vertical flow by measuring the pressure drop and local void fraction on vertical-up flow of close system is evaluated.

Notchback자동차의 트렁크 높이와 공기속도가 차체 표면의 압력변화에 미치는 영향 (Effect of Trunk Height and Approaching Air Velocity of Notchback Road Vehicles on the Pressure Distribution of the Car Surface)

  • 박종수;최병대;김성준
    • 한국자동차공학회논문집
    • /
    • 제10권6호
    • /
    • pp.178-186
    • /
    • 2002
  • 3-D numerical studies are performed to investigate the effect of the trunk height and approaching air velocities on the pressure distribution of notchback road vehicle. For this purpose, the models of test vehicle with four different trunk heights are introduced and PHOENICS, a commercial CFD code, is used to simulate the flow phenomena and to estimate the values of pressure coefficients along the surface of vehicle. The standard k-$\xi$ model is adopted for the simulation of turbulence. The numerical results say that the height variation of trunk makes almost no influence on the distribution of the value of pressure coefficient along upper surface but makes very strong effects on the rear surface. That is, the value of pressure coefficient becomes smaller as the height is increased along the rear surface and the bottom surface. Approaching air velocity make no differences on pressure coefficients. Through the analysis of pressure coefficient on the vehicle surfaces one tried to assess aerodynamic drag and lift of vehicle. The pressure distribution on the rear surface affected more on drag and lift than pressure distribution on the front surface of the vehicle does. The increase of trunk height makes positive effects on the lift decrease but negative effects on drag reduction.

Ahmed Body 주위의 3차원 난류유동 해석 - 난류모델의 평가 (Simulation of Three-Dimensional Turbulent Flows around an Ahmed Body-Evaluation of Turbulence Models-)

  • 명현국;진은주;박희경
    • 대한기계학회논문집B
    • /
    • 제21권7호
    • /
    • pp.873-881
    • /
    • 1997
  • A numerical simulation has been carried out for three-dimensional turbulent flows around an Ahmed body. The Reynolds-averaged Navier-Stokes equation is solved with the SIMPLE method in general curvilinear coordinates system. Several k-.epsilon. turbulence models with two convective difference schemes are evaluated for the performance such as drag coefficient, velocity and pressure fields. The drag coefficient, the velocity and pressure fields are found to be changed considerably with the adopted k-.epsilon. turbulence models as well as the finite difference schemes. The results of simulation prove that the RNG k-.epsilon. model with the QUICK scheme predicts fairly well the tendency of velocity and pressure fields and gives more reliable drag coefficient. It is also demonstrated that the large difference between simulations and experiment in the drag coefficient is due to relatively high predicted values of pressure drag from vertical rear end base.

정상류 수몰 사각실린더에 작용하는 항력 특성에 관한 수치모의 연구 (Numerical Study of Drag Forces Acting on a Submerged Square Cylinder in Steady Flow Condition)

  • 이두한;김영주;이동섭
    • 한국산학기술학회논문지
    • /
    • 제15권6호
    • /
    • pp.3950-3960
    • /
    • 2014
  • 본 연구에서는 수치모의를 통해서 월류 흐름이 존재하는 수몰 사각 실린더의 항력 특성에 대하여 분석하였다. 모의의 신뢰성을 검토하기 위하여 실험자료와 비교하였으며 실험에서 측정하기 어려운 실린더 접촉면의 압력에 대한 분석을 통해서 상대 수심에 따른 항력의 특성을 분석하였다. 3차원 동수역학 모형을 이용한 수몰 사각 실린더의 항력 계산 결과는 실험자료의 상대 수심의 변화에 따른 항력계수의 변화를 유사하게 모의하고 있음을 확인할 수 있었다. 수치모의 결과 분석에 의하면 수몰 사각 실린더에 작용하는 항력은 대부분 압력이며 상대 수심이 증가함에 따라 전단력의 비중은 감소하였다. 실린더 접촉면의 압력계수 분석 결과에 의하면 상대 수심이 낮은 경우에는 전면부에 높은 압력계수가 형성되고 후면부에 낮은 압력계수가 형성되어 결과적으로 높은 항력계수가 나타남을 확인하였다. 상대수심이 증가하면 전면부의 압력계수는 감소하고 후면부의 압력계수는 증가하여 2차원 흐름 내의 사각 실린더와 유사한 양상을 나타낸다. 정수압 영향 분석에 의하면 전면부와 후면부의 수위 차에 의한 정수압은 항력에 미치는 영향이 제한적이며 사각 실린더에 의해 형성되는 국부적인 수위와 함께 3차원적인 흐름에 의해 형성되는 동수압의 영향이 크다는 것을 확인하였다.

능동제어를 이용한 구의 저항 감소 (Active Controls of Flow Over a Sphere for Drag Reduction)

  • 전승;최해천
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2006년 제4회 한국유체공학학술대회 논문집
    • /
    • pp.199-202
    • /
    • 2006
  • The objective of this study is to propose methods of controlling the wake behind a sphere for drag reduction using the suboptimal control theory and surrogate management framework, respectively. The Reynolds numbers considered is 300 at which the base flow is unsteady planar symmetric. Given the cost function defined as the square of the difference between the target pressure (potential-flow pressure) and real flow pressure on the sphere surface, the suboptimal control makes the flow steady axisymmetric and produces drag reduction. Based on the actuation profile from the suboptimal control, the optimal wavy actuation profile is obtained using the surrogate management framework and produces drag reduction.

  • PDF

초음속 역분사 유동이 초음속 비행체 성능에 미치는 영향에 대한 수치해석적 연구 (A Numerical Analysis of Supersonic Counter Jet Flow Effect on Performance of a Supersonic Blunt-Body)

  • 서덕교;서정일;송동주
    • 한국전산유체공학회지
    • /
    • 제7권3호
    • /
    • pp.1-8
    • /
    • 2002
  • The counter jet flow which is injected against the free stream at stagnation region of blunt body for improvement of aerodynamic performance has been studied by using upwind Navier-Stokes method. The variations of drag force and upwind forward penetration depth due to changes in the stagnation thermodynamic properties of counter jet flow such as total pressure, Mach number, and total temperature have been studied. The results show that the changes in the stagnation pressure and Mach number have large effects on the wall pressure and drag force, but the total temperature does not affect the wall pressure and drag force.

운전부하에 따른 3차원 소형축류홴 날개표면에 작용하는 정압과 항력에 대한 대규모와 모사 (Large Eddy Simulation on the Drag and Static Pressure Acting on the Blade Surface of Three-Dimensional Small-Size Axial Fan with Different Operating Loads)

  • 김장권;오석형
    • 동력기계공학회지
    • /
    • 제21권2호
    • /
    • pp.57-63
    • /
    • 2017
  • The large-eddy simulation(LES) was carried out to evaluate the drag and static pressure acting on the blade surface of a small-size axial fan(SSAF) under the condition of unsteady-state, incompressible fluid and three-dimensional coordination. The axial component of drag coefficient increases with the increase of operating load, but the radial components have negligible sizes regardless of operating loads. Otherwise, the static pressures acting on the blade surfaces of SSAF show different distributions around the operating point of D equivalent to the stall. Also, with the increase of operating load, the static pressures acting on the pressure and suction surfaces of blade concentrate at the tips and leading-edges as a whole.

Navier-Stokes Computations and Experiment of The Supersonic Flows Over a Cylindrical Afterbody with Base Bleed

  • 김희동;권오식
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2000년도 제14회 학술강연논문집
    • /
    • pp.14-14
    • /
    • 2000
  • One of the most important aerodynamic performance characteristics for projectiles is the total drag which can be typically divided into three components, pressure drag (excluding the base), viscous skin friction drag, and base drag. In a range of supersonic flight speeds the base drag is a major contributor to the total drag and can be as much as 50%∼70% of the total drag, depending on the afterbody configuration of projectiles. It is of especial importance to minimize this part of. the drag.

  • PDF