• Title/Summary/Keyword: Pressure Dispersion

Search Result 253, Processing Time 0.045 seconds

Numerical Analysis of the Effect of Injection Pressure Variation on Free Spray and Impaction Spray Characteristics

  • Park, Kweon-Ha;Kim, Byung-Hyun
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.236-250
    • /
    • 2000
  • Compression ignition direct injection diesel engines employed a high pressure injection system have been developed as a measure to improve a fuel efficiency and reduce harmful emissions. In order to understand the effects of the pressure variation, many experimental works have been done, however there are many difficulties to get data in engine condition. This work gives numerical results for the high pressure effects on spray characteristics in wide or limited space with near walls. The gas phase is modelled by Eulerian continuum conservation equations of mass, momentum, energy and fuel vapour fraction. The liquid phase is modelled using the discrete droplet model approach in Lagrangian form and the drop behavior on a wall is calculated with a new droplet-wall interaction model based on the experiments observing individual drops. The droplet distributions, vapour fractions and gas flows are shown in various injection pressure cases. In free spray case which the injection spray has no wall impaction, the spray dispersion and vapour fraction increase and drop sizes decrease with increasing injection pressure. The same phenomena appears more clearly in wall impaction cases.

  • PDF

Pressure Filtration of Zr(Y,Ce)$O_2$ TZP/Mullite Suspensions for the Preparations of Functionally Gradient Materials with Multi-layer (다층 경사기능재료의 제조를 위한 Zr(Y,Ce)$O_2$ TZP/Mullite 현탁액의 가압여과)

  • 이상진;박상희;박홍채;전병세
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.7
    • /
    • pp.693-699
    • /
    • 2000
  • Casting behavior of Zr(Y,Ce)O2 TZP/Mullite suspension during pressure filtration was investigated to prepare multi-layered Functionally Gradient Materials(FGM). The dispersion stabilities of each layer suspension were investigated by examination of zeta potential and viscosity. The each suspensions with 20 vol.% solid loading and 100 첸 of viscosity was prepared after fix of the dispersing agent (Sodium hexa-meta phosphate) and the binder (Hydroxyethyl cellulose), and then the cakes were formed at the 2.5 MPa~10.0MPa pressure range. The cake thickness of all suspensions was increased with the square root of time at the constant pressure, and the relations between filtration pressure(P)a nd dehydration rate (Q=dh/dt) showed that the flows of filtrates in the consolidated layers were laminar. The permeabilities were nearly constant during filtration, and kozeny constants(Kc) of the suspensions were 4.8~6.7. These valumes were seen as close to 5, which might be homogeneous particle packing during filtration. On the basis of those data, the multi layered compaction with 9 mm thickness and 52.5% green density was prepared by continuous pressure filtration.

  • PDF

Application of Compression Molding to Determination of Binder System for Low Pressure Injection Molding (열간압축성형에 의한 저압사출성형 결합제 시스템의 결정)

  • 김상우;이해원;송휴섭;김병호
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.8
    • /
    • pp.823-828
    • /
    • 1994
  • Dispersion condition of Si3N4 powder in molten wax was established by comparing relative viscosity of mixture with 20 vol% solids loading, while the evaluation of compression-molded sample was demonstrated as an effective method for developing a binder system for injection molding. The best dispersion of Si3N4 powder in molten wax was achieved when Si3N4 powder was treated with 5% stearic acid, and the critical powder volume fraction was determined to be about 0.51 from density measurement of compression-molded samples. Samples containing polar secondary binder showed markedly improved green strength, higher thermal expansion and increased wicking rate in the early stage.

  • PDF

Numerical Study of Turbulent Swirling Isothermal and Spray-Combusting Flows (난류선회 등온 및 분무연소 유동에 대한 수치해석)

  • 김성구;안국영;김용모;이창식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.5
    • /
    • pp.130-141
    • /
    • 1996
  • Numerical study of a confined, swirling, isothermal and spray-combusting flows has been presented. The pressure-velocity coupling in the Eulerian gas-phase equation is handled by the improved PISO algorithm. The droplet dispersion by turbulence is introduced by a Stochastic Separated Flow(SSF) model. The k-$\varepsilon$ turbulence model and the eddy dissipation model are employed to account for turbulence-combustion interaction. The detailed comparison with experimental data has been made for the isothermal jet swirling flows and the nearly monodisperse spray-combusting flow in the swirl combustor.

  • PDF

A Numerical Study on the Toxic Gaseous and Solid Pollutant Dispersion in an Open Atmosphere (고-기상 유해물질 대기확산에 관한 수치해석)

  • 이선경;송은영;장동순
    • Journal of the Korean Society of Safety
    • /
    • v.9 no.1
    • /
    • pp.146-154
    • /
    • 1994
  • A series of numerical calculations are performed in order to investigate the dispersion mechanism of toxic gaseous and solid pollutants in extremely short-term and short range. The calculations are carried out in an open space characterized by turbulent boundary layer. The simulation is made by the use of numerical model, in which a control-volume based finite difference method is used together with the SIMPLEC algorithm for the resolution of the pressure-velocity coupling problem. The Reynolds stresses are solved by two-equation, k-$\varepsilon$ model modified for buoyancy. The major parameters consider-ed in this study are temperature, velocity and Injection height of toxic gases, environmental conditions such as temperature and velocity of free stream air, and topographic factor. The results are presented and discussed in detail. The flow field is commonly characterized by the formation of a strong recirculation zone due to the upward motion of the hot toxic gas and ground shear stress. The driving force of the upward motion is explained by the effect of thermal buoyancy of hot gas and the difference of inlet velocity between toxic gas and free stream.

  • PDF

Risk Assessment of Compressor Room for Next Generation LNG Carriers (차세대 LNG선 컴프레서룸의 위험성 해석)

  • Moon, Ki-Ho;Song, Seok-Lyong;Jeong, Sam-Heon;Ha, Jong-Phil
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2008.09a
    • /
    • pp.76-83
    • /
    • 2008
  • New and more efficient propulsion systems are required for LNG carriers. One of the proposed systems is a combination of a gas turbine with a heat recovery steam generator. This system constitutes a novel approach, which needs to be analyzed by system analysis and risk assessment to compensate for the lack of field experience. Of specific concern is the high pressure fuel supply system. This paper describes the dispersion and fire analysis performed to identify for safety and design improvement of proposed system.

  • PDF

Microencapsulation of Anchovy Oil by Sodium Alginate (알긴산소다를 이용한 멸치어유의 미세캡슐화)

  • 임상빈;좌미경
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.28 no.4
    • /
    • pp.890-894
    • /
    • 1999
  • Microencapsulation of anchovy oil as a core material in sodium alginate as a wall material was inves tigated. Microencapsulation was accomplished by injecting an oil/water emulsion, consisting of a mixture of liquefied sodium alginate and emulsifier, under high pressure through an orifice submerged in a calcium lactate solution. Microcapsules suspended in a dispersion fluid were observed under a fluorescence mi croscope to verify the presence of the capsules and to note coalescence or degradation of the capsules. Optimum conditions for microencapsulation of anchovy oil were obtained when 1.0% aqueous solution of sodium alginate contained 3% of a 1:1 ratio of ESPR 25(polyglycerine+polylinoleate) and TW 20(sorbitan laurate+ethylene oxide) as an emulsifier in terms of capsule size and size distribution, and emulsion stability. The airless sprayer produced microcapsules with a diameter between 15.9 and 73.9 m with different concentration of a wall material. The optimum mixing ratio of wall material to core material was 90:10(wt/wt). 0.2% calcium lactate was appropriate as a dispersion fluid.

  • PDF

Evaluation on the mechanical perfomance of cement paste using to carbon nanotube dispersion solution prepared by different superplasticizers (탄소나노튜브 분산에 활용된 유동화제 종류가 시멘트페이스트의 역학적 성능에 미치는 영향)

  • Park, Sung-Hwan;Kim, Ji-Hyun;Chung, Chul-Woo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.04a
    • /
    • pp.95-96
    • /
    • 2022
  • Carbon nanotubes has a positive effect on the mechanical properties, functionality, and durability of cement-based materials. In this study, carbon nanotube solutions mixed with two different types of superplasticizers were dispersed by high-pressure homogenizer, and used for preparation of cement paste. The 7and 28day compressive strength were evaluated.

  • PDF

Liquid LPG Spray Characteristics With Injection Pressure Variation -Comparison with Diesel Spray- (분사압력변화에 따른 액체 LPG 분무특성 -디젤분무와의 비교-)

  • Lim, Hee-Sung;Park, Kweon-Ha
    • Journal of the Korean Society of Combustion
    • /
    • v.4 no.2
    • /
    • pp.43-50
    • /
    • 1999
  • Liquefied petroleum gas (LPG) has been used as motor fuel due to its low emissions and low cost. The fuel feeding system has been improved with stringent requirement for exhaust emissions. LPG carburetion system was first introduced, then the system has been changed to a precisely controlled gas injection system, but this gas feeding system has a limitation on improving power output. In order to improve an engine performance, a multi-point port injection system was introduced recently, and a liquid direct injection system into a cylinder was suggested as a next generation system to maximize a fuel economy as well as a power. This study addresses the analysis of the LPG spray from diesel injectors. The spray images are visualized and compared with diesel sprays in a wide injection pressure range. The photographs show much wider dispersion of LPG sprays.

  • PDF

Effects of Upset Pressure on Weldability in the Friction Welding of Cu to Cu-W Sintered Alloy (동-텅스텐 소결합금(Cu-W)과 동(Cu)의 마찰용접 특성에 미치는 업셋압력의 영향에 관한 연구)

  • 강성보;민택기
    • Journal of Welding and Joining
    • /
    • v.17 no.5
    • /
    • pp.69-76
    • /
    • 1999
  • A copper-tungsten sintered alloy(Cu-W) has been friction welded to a tough pitch copper in order to investigate the effect of upset pressure on friction weldability. Under the condition of friction time 0.8sec, upset pressure 150MPa, the tensile strength and Charpy impact value of the friction welded joint were 336MPa, $400KJ/m^2$ respectively. And highest temperature of the weld measured was below $800^{circ}K$ which is very lower than melting point of Cu($1356^{circ}K$). Under the same conditions, W grains picked up in Cu matrix from Cu-W profitably affected on these mechanical fracture, and were dispersed in Cu by plastic flow during brake time.

  • PDF