• 제목/요약/키워드: Pressure Coupling

검색결과 444건 처리시간 0.026초

A new geomechanical approach to investigate the role of in-situ stresses and pore pressure on hydraulic fracture pressure profile in vertical and horizontal oil wells

  • Saberhosseini, Seyed Erfan;Keshavarzi, Reza;Ahangari, Kaveh
    • Geomechanics and Engineering
    • /
    • 제7권3호
    • /
    • pp.233-246
    • /
    • 2014
  • Estimation of fracture initiation pressure is one of the most difficult technical challenges in hydraulic fracturing treatment of vertical or horizontal oil wells. In this study, the influence of in-situ stresses and pore pressure values on fracture initiation pressure and its profile in vertical and horizontal oil wells in a normal stress regime have been investigated. Cohesive elements with traction-separation law (XFEM-based cohesive law) are used for simulating the fracturing process in a fluid-solid coupling finite element model. The maximum nominal stress criterion is selected for initiation of damage in the cohesive elements. The stress intensity factors are verified for both XFEM-based cohesive law and analytical solution to show the validation of the cohesive law in fracture modeling where the compared results are in a very good agreement with less than 1% error. The results showed that, generally by increasing the difference between the maximum and minimum horizontal stress, the fracture pressure and its profile has been strongly changed in the vertical wells. Also, it's been clearly observed that in a horizontal well drilled in the direction of minimum horizontal stress, the values of fracture pressure have been significantly affected by the difference between overburden pressure and maximum horizontal stress. Additionally, increasing pore pressure from under-pressure regime to over-pressure state has made a considerable fall on fracture pressure in both vertical and horizontal oil wells.

차압식 벤튜리콘 유량계에 대한 유동해석 (Numerical analysis of the differential pressure venturi-cone flowmeter)

  • 윤준용;맹주성;이정원
    • 설비공학논문집
    • /
    • 제10권6호
    • /
    • pp.714-720
    • /
    • 1998
  • The differential pressure venturi-cone flowmeter is an advanced flowmeter which has many advantages such as wide range of measurement, high accuracy, excellent flow turn-down ratio, low headless, short installation pipe length requirement, and etc. Like other differential pressure flowmeters, the venturi-cone flowmeter uses the law of energy conservation, but its shape and position make it perform better than others. The cone acts as its own flow conditioner and mixer, fully conditioning and mixing the flow prior to measurement. For the analysis, we used Reynolds-averaged Wavier-Stokes equations and k-$\omega$ turbulence model. The equations were fully transformed into the computational domain, the pressure-velocity coupling was made through SIMPLER algorithm, and the equations were discretized using finite analytic solutions of the liberalized equations(Finite Analytic Method). To control the separation phenomenon on the cone surface, we proposed a new shape of cone, and analyzed the flowfield in the new flowmeter system, and found the improvement on the performance of the new cone flowmeter.

  • PDF

원격 생체 측정 장치를 위한 다중 발신 코일 구동 드라이버 설계 (Design of a Multiple Transmit Coil Driver for Implantable Telemetry Devices)

  • 유영기
    • 제어로봇시스템학회논문지
    • /
    • 제21권7호
    • /
    • pp.609-614
    • /
    • 2015
  • Implanted telemetry systems provide the ability to monitor different species of animals while they move within their cages. Species monitored include mice, rats, rabbits, dogs, pigs, primates, sheep, horses, cattle, and others. A miniature transmitter implanted in each animal measures one or more parameters. Parameters measured include arterial pressure, intra-pleural pressure, left ventricular pressure, intra-ocular pressure, bladder pressure, ECG, EMG, EEG, EOG, temperature, activity, and other parameters and transmits the data via radio frequency signals to a nearby receiver. Every conventional dedicated transmitter contains one or more sensors, cpu and battery. Due to the expected life of the battery, the measuring time is limited. To overcome these problems, electromagnetic inductive coupling based wireless power transmission technology using multiple transmit coils were proposed, with each coil having a different active area driven by the coil driver. In this research, a parallel resonance based coil driver and serial resonance based coil driver are proposed. From the experiments we see that the parallel coil driver shows better performance under a low impedance and multiple coils configuration. However, the serial coil driver is more efficient for high impedance transmit coils.

A mesoscale stress model for irradiated U-10Mo monolithic fuels based on evolution of volume fraction/radius/internal pressure of bubbles

  • Jian, Xiaobin;Kong, Xiangzhe;Ding, Shurong
    • Nuclear Engineering and Technology
    • /
    • 제51권6호
    • /
    • pp.1575-1588
    • /
    • 2019
  • Fracture near the U-10Mo/cladding material interface impacts fuel service life. In this work, a mesoscale stress model is developed with the fuel foil considered as a porous medium having gas bubbles and bearing bubble pressure and surface tension. The models for the evolution of bubble volume fraction, size and internal pressure are also obtained. For a U-10Mo/Al monolithic fuel plate under location-dependent irradiation, the finite element simulation of the thermo-mechanical coupling behavior is implemented to obtain the bubble distribution and evolution behavior together with their effects on the mesoscale stresses. The numerical simulation results indicate that higher macroscale tensile stresses appear close to the locations with the maximum increments of fuel foil thickness, which is intensively related to irradiation creep deformations. The maximum mesoscale tensile stress is more than 2 times of the macroscale one on the irradiation time of 98 days, which results from the contributions of considerable volume fraction and internal pressure of bubbles. This study lays a foundation for the fracture mechanism analysis and development of a fracture criterion for U-10Mo monolithic fuels.

트라우즐 연주시험과 수치해석에 의한 전색 매질별 발파효과 영향에 관한 연구 (Study on Blast Effects of Stemming Materials by Trauzl Lead Block Test and Numerical Analysis)

  • 고영훈;김승준;;양형식
    • 화약ㆍ발파
    • /
    • 제35권4호
    • /
    • pp.19-26
    • /
    • 2017
  • 트라우즐 연주시험은 폭발물의 영향을 측정하기 위한 방법 중 하나이다. 일정크기 연주기둥 중앙의 발파공 내부에서 폭발에 의한 용적 확대량을 측정하여 폭발력을 측정하는데 이용된다. 본 연구에서는 발파공 내부 폭약주변의 채움재에 따른 폭발영향을 비교분석하기 위하여 트라우즐 연주시험 및 AUTODYN 수치해석을 하였다. 사용폭약은 일반 에멀젼 폭약을 적용하였고, 디커플링 조건과 모래, 물, 젤라틴의 충전재를 선정하였다. 시험 및 수치해석 결과 연주블록 발파공의 확대 정도는 물과 젤라틴이 유사하였고, 모래, 디커플링 조건 순으로 확대치를 나타냈다. 또한 연주기둥 외곽에서 측정한 동적 변형률 및 수치해석 전달압력의 경우 시험결과와 상응하였고, 같은 양상을 확인할 수 있었다.

Na+/MgO 촉매상에서 메탄의 Oxidative Coupling 반응의 속도론적 해석 (Kinetic Analysis of Oxidative Coupling of Methane over Na+/MgO Catalyst)

  • 서호준;선우창신;유의연
    • 공업화학
    • /
    • 제5권4호
    • /
    • pp.580-587
    • /
    • 1994
  • 고정층 상압 유통식 반응기에서 메탄의 전화율 10% 미만의 범위에서 $Na^+(50wt%)/MgO$ 촉매를 사용하여 반응온도 710, 730, 750, 770, $790^{\circ}C$에서 메탄과 산소의 분압을 변화시켜 가면서 메탄의 oxidative coupling반응을 수행하여 이산화탄소와 에탄의 생성속도를 구하고 curve fitting으로 속도식을 증명하였다. Langmuir-Hinshelwood, Rideal-Redox, Eley-Rideal형 반응 메카니즘 중에서 Langmuir-Hinshelwood형 반응 메카니즘이 실험 결과와 가장 잘 일치하였으며, $CH_3{\cdot}$의 생성에 관여하는 산소종은 촉매 표면의 $O_2{^-}$ 또는 $O_2{^{2-}}$으로 제시할 수 있었고, 이때의 활성화 에너지는 약 39.3kcal/mol이었다. 또한, curve fitting결과 $CO_x$을 생성하는 산소의 화학 양론계수 x는 약 1.5이었으며, 이로부터 $CH_3{\cdot}$의 일부가 표면산소에 의해서 산화반응을 거쳐 $CH_3O_2{\cdot}*$ 형성을 추측할 수 있었다.

  • PDF

잔향수조의 구조-음향 연성효과에 관한 수치 및 실험적 고찰 (Numerical and Experimental Investigation on Structure-acoustic Coupling Effect in a Reverberant Water Tank)

  • 박용;김국현;조대승;이종주
    • 대한조선학회논문집
    • /
    • 제56권1호
    • /
    • pp.94-101
    • /
    • 2019
  • Underwater acoustic power should be measured in a free field, but it is not easy to implement. In practice, the measurement could be performed in a reverberant field such as a water-filled steel tank and concrete tank. In this case, the structure and the acoustic field are strongly or weakly coupled according to material properties of the steel and water. So, characteristics of the water tank must be investigated in order to get the accurate underwater acoustic power. In detail, modal frequencies, mode shapes of the structure and frequency response functions of the acoustic field could represent the characteristics of the reverberant water tank. In this paper, the structure-acoustic coupling has been investigated on a reverberant water tank numerically and experimentally. The finite element analysis has been carried out to estimate the structural and acoustical modal parameters under the dry and water-filled conditions, respectively. In order to investigate the structure-acoustic coupling effect, the numerical analysis has been performed according to the structure stiffness change of the water tank. The acoustic frequency response functions were compared with the numerical analysis and acoustic exciting test. From the results, the structural modal frequencies of the water-filled condition have been decreased compared to those of the dry condition in the low frequency range. The acoustic frequency response functions under the coupled boundary conditions showed different patterns from those under the ideal boundary conditions such as the pressure release and rigid boundary condition, respectively.

Coupling non-matching finite element discretizations in small-deformation inelasticity: Numerical integration of interface variables

  • Amaireh, Layla K.;Haikal, Ghadir
    • Coupled systems mechanics
    • /
    • 제8권1호
    • /
    • pp.71-93
    • /
    • 2019
  • Finite element simulations of solid mechanics problems often involve the use of Non-Confirming Meshes (NCM) to increase accuracy in capturing nonlinear behavior, including damage and plasticity, in part of a solid domain without an undue increase in computational costs. In the presence of material nonlinearity and plasticity, higher-order variables are often needed to capture nonlinear behavior and material history on non-conforming interfaces. The most popular formulations for coupling non-conforming meshes are dual methods that involve the interpolation of a traction field on the interface. These methods are subject to the Ladyzhenskaya-Babuska-Brezzi (LBB) stability condition, and are therefore limited in their implementation with the higher-order elements needed to capture nonlinear material behavior. Alternatively, the enriched discontinuous Galerkin approach (EDGA) (Haikal and Hjelmstad 2010) is a primal method that provides higher order kinematic fields on the interface, and in which interface tractions are computed from local finite element estimates, therefore facilitating its implementation with nonlinear material models. The inclusion of higher-order interface variables, however, presents the issue of preserving material history at integration points when a increase in integration order is needed. In this study, the enriched discontinuous Galerkin approach (EDGA) is extended to the case of small-deformation plasticity. An interface-driven Gauss-Kronrod integration rule is proposed to enable adaptive enrichment on the interface while preserving history-dependent material data at existing integration points. The method is implemented using classical J2 plasticity theory as well as the pressure-dependent Drucker-Prager material model. We show that an efficient treatment of interface variables can improve algorithmic performance and provide a consistent approach for coupling non-conforming meshes in inelasticity.

A study on the action mechanism of internal pressures in straight-cone steel cooling tower under two-way coupling between wind and rain

  • Ke, S.T.;Du, L.Y.;Ge, Y.J.;Yang, Q.;Wang, H.;Tamura, Y.
    • Wind and Structures
    • /
    • 제27권1호
    • /
    • pp.11-27
    • /
    • 2018
  • The straight-cone steel cooling tower is a novel type of structure, which has a distinct aerodynamic distribution on the internal surface of the tower cylinder compared with conventional hyperbolic concrete cooling towers. Especially in the extreme weather conditions of strong wind and heavy rain, heavy rain also has a direct impact on aerodynamic force on the internal surface and changes the turbulence effect of pulsating wind, but existing studies mainly focus on the impact effect brought by wind-driven rain to structure surface. In addition, for the indirect air cooled cooling tower, different additional ventilation rate of shutters produces a considerable interference to air movement inside the tower and also to the action mechanism of loads. To solve the problem, a straight-cone steel cooling towerstanding 189 m high and currently being constructed is taken as the research object in this study. The algorithm for two-way coupling between wind and rain is adopted. Simulation of wind field and raindrops is performed with continuous phase and discrete phase models, respectively, under the general principles of computational fluid dynamics (CFD). Firstly, the rule of influence of 9 combinations of wind sped and rainfall intensity on flow field mechanism, the volume of wind-driven rain, additional action force of raindrops and equivalent internal pressure coefficient of the tower cylinder is analyzed. On this basis, the internal pressures of the cooling tower under the most unfavorable working condition are compared between four ventilation rates of shutters (0%, 15%, 30% and 100%). The results show that the 3D effect of equivalent internal pressure coefficient is the most significant when considering two-way coupling between wind and rain. Additional load imposed by raindrops on the internal surface of the tower accounts for an extremely small proportion of total wind load, the maximum being only 0.245%. This occurs under the combination of 20 m/s wind velocity and 200 mm/h rainfall intensity. Ventilation rate of shutters not only changes the air movement inside the tower, but also affects the accumulated amount and distribution of raindrops on the internal surface.

실시간 맥박 및 혈압 측정을 위한 폴리머 기판 압력센서 개발 (Development of Pressure Sensor on Polymer Substrate for Real-time Pulse and Blood Pressure Measurements)

  • 김진태;김성일;정연호
    • 한국전기전자재료학회논문지
    • /
    • 제26권9호
    • /
    • pp.669-676
    • /
    • 2013
  • In this study, we introduce a polymer(polyimide) based pressure sensor to measure real-time heart beat and blood pressure. The sensor have been designed with consideration of skin compatibility of material, cost effectiveness, manufacturability and wireless detection. The designed sensor was composed of inductor coils and an air-gap capacitor which generate self-resonant frequency when electrical source is applied on the system. The sensor was obtained with metalization, etching, photolithography, polymer adhesive bonding and laser cutting. The fabricated sensor was shaped in circular type with 10mm diameter and 0.45 mm thickness to fit radial artery. Resonant frequencies of the fabricated sensors were in the range of 91~96 MHz on 760 mmHg pressurized environment. Also the sensor has good linearity without any pressure-frequency hysteresis. Sensitivity of the sensor was 145.5 kHz/mmHg and accuracy was less than 2 mmHg. Real-time heart beat measurement was executed with a developed hand-held measurement system. Possibility of real-time blood pressure measurement was showed with simulated artery system. After installation of the sensor on skin above radial artery, simple real blood pressure measurement was performed with 64 mmHg blood pressure variation.