• 제목/요약/키워드: Pressure Correction Method

검색결과 159건 처리시간 0.023초

Experimental Investigation of Ion Mobility Measurements in Oxygen under Different Gas Pressures

  • Liu, Yun-Peng;Huang, Shi-long
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권2호
    • /
    • pp.852-857
    • /
    • 2017
  • In this paper, measurements of ion mobility were performed in oxygen at gas pressures of 44.52 - 101.19 kPa using the drift tube method. Over this pressure range, mobility values were within the limits of 1.796 to $3.821cm^2{\cdot}V^{-1}{\cdot}s^{-1}$ were determined and ion mobility shown to decrease non-linearly with increasing gas pressure towards a certain level of saturation. Ion mobility measured in air was lower than that measured in oxygen at the same gas pressure. Finally, a parameter correction method for calibrating the relationship between the ion mobility and gas pressure in oxygen was proposed.

튜브시스템에서 변동풍압의 보정 (Correction of Fluctuation Pressure by Tube System)

  • 유기표;김영문
    • 한국공간구조학회논문집
    • /
    • 제2권1호
    • /
    • pp.67-73
    • /
    • 2002
  • Measurement of fluctuating pressure by tube system is carefully designed due to the organ-pipe resonance. It is necessary to correct the pressure before analysis. The three method for correction the distortion fluctuation pressure short tube length and the frequency response functions and insert a restrictor in the tube to increase the damping. The first method is useful when the tube length is short. In second method, the distorted signal through the tubing transformed into the frequency domain, dividing by transfer function and inverse fourier transforming back into the time domain gives the required pressure signal. In this paper three types of tubing which have different length of 100cm, 150cm, 200cm were experimented the distorted signal and correct the distortion signal

  • PDF

원전 안전 1등급 기기의 유한요소 탄소성 시간이력 지진해석 결과에 미치는 가속도 가진 방법 내 기준선 조정의 영향에 대한 예비연구 (Preliminary Study on Effect of Baseline Correction in Acceleration Excitation Method on Finite Element Elastic-Plastic Time-History Seismic Analysis Results of Nuclear Safety Class I Components)

  • 김종성;박상혁
    • 한국압력기기공학회 논문집
    • /
    • 제14권2호
    • /
    • pp.69-76
    • /
    • 2018
  • The paper presents preliminary investigation results for the effect of the baseline correction in the acceleration excitation method on finite element seismic analysis results (such as accumulated equivalent plastic strain, equivalent plastic strain considering cyclic plasticity, von Mises effective stress, etc) of nuclear safety Class I components. For investigation, finite element elastic-plastic time-history seismic analysis is performed for a surge line including a pressurizer lower head, a pressurizer surge nozzle, a surge piping, and a hot leg surge nozzle using the Chaboche hardening model. Analysis is performed for various seismic loading methods such as acceleration excitation methods with and without the baseline correction, and a displacement excitation method. Comparing finite element analysis results, the effect of the baseline correction is investigated. As a result of the investigation, it is identified that finite element analysis results using the three methods do not show significant difference.

보정곡선을 이용한 마이크로가스터빈 열병합발전시스템의 성능예측과 활용 (Performance Prediction of a Micro Gas Turbine Cogeneration System Using Correction Curves and its Applications)

  • 최병선;김정호;김민재;김동섭
    • 한국유체기계학회 논문집
    • /
    • 제19권2호
    • /
    • pp.27-35
    • /
    • 2016
  • The purpose of this study is to develop a method to predict the performance and economics of a micro gas turbine cogeneration system using performance correction curves. The variables of correction curves are ambient temperature, ambient pressure, relative humidity and load fraction. All of the values of correction factors were expressed as relative values with respect to design values at the ISO conditions. Once the correction curves are obtained, system performance can be predicted relatively easily compared to a detailed performance analysis method through a simple multiplication of the correction factors of various variables at any operating conditions. The predicted results using the correction curve method were compared with those by the detailed and more complex performance analysis in a wide operating range, and its feasibility was confirmed. To illustrate the usability of the correction curve method, the results of an economic analysis of a cogeneration system considering varying operating ambient condition and load was presented.

전조가공을 이용한 기어의 치형오차수정에 관한 연구 (A Study on Correction of the Gear Tooth Profile Error by Finish Roll Forming)

  • 류성기
    • 한국정밀공학회지
    • /
    • 제22권4호
    • /
    • pp.159-166
    • /
    • 2005
  • This study deals with the correction of gear tooth profile error by finish roll forming. First, we experimentally confirmed that the tooth profile error is a synthesis of the concave error and the pressure angle error. Since various types of tooth profile errors appear in the experiments, we introduced evaluation parameters for rolling gears to objectively evaluate profile quality. Using these evaluation parameters, we clarified the relationship among the tooth profile error, the addendum modification factor (A. M. factor), and the tool loading force. We verified the character of concave error, pressure angle error, tool loading force and number of cycles of finish roll forming by using a forced displacement method. This study makes clear that tool loading force and number of cycles of finish roll forming are very important factors that affect involute tooth profile error. The results of the experiment and analysis show that the proposed method reduces concave and pressure angle errors.

다양한 분사조건과 LPG 액상분사엔진의 연료량 제어 (Various Injection Conditions and Fuel Control of an LPG Liquid Injection Engine)

  • 심한섭
    • 한국자동차공학회논문집
    • /
    • 제13권1호
    • /
    • pp.28-35
    • /
    • 2005
  • Fuel injection rate of an injector is affected by various injection conditions such as injection duration, fuel temperature, injection pressure, and voltage in LPG liquid injection systems for either a port-fuel-injection(PFI) or a direct injection(DI) in a cylinder. Even fuel injection conditions are changed, the air-fuel ratio should be accurately controlled to educe exhaust emissions. In this study, correction factor for the fuel injection rate of an injector is derived from the density ratio and the pressure difference ratio. A voltage correction factor is researched from injection test results on an LPG liquid injection engine. A compensation method of the fuel injection rate is proposed for a fuel injection control system. The experimental results for the LPG liquid injection system in a SI-engine show that this system works well on experimental range of engine speed and load conditions. And the fuel injection rate is accurately controlled by the proposed compensation method.

오차수정법을 도입한 비압축성 유체유동 해석을 위한 수치적 방법 (Numerical algorithm with the concept of defect correction for incompressible fluid flow analysis)

  • 권오붕
    • 대한기계학회논문집B
    • /
    • 제21권3호
    • /
    • pp.341-349
    • /
    • 1997
  • The characteristics of defect correction method are discussed in a sample heat conduction problem showing the numerical solution of the error correction equation can predict the error of the numerical solution of the original governing equation. A way of using defect correction method combined with the existing algorithm for the incompressible fluid flow, is proposed and subsequently tested for the driven square cavity problem. The error correction equations for the continuity equation and the momentum equations are considered to estimate the errors of the numerical solutions of the original governing equations. With this new approach, better velocity and pressure fields can be obtained by correcting the original numerical solutions using the estimated errors. These calculated errors also can be used to estimate the orders of magnitude of the errors of the original numerical solutions.

자유수면 보정기법을 이용한 3차원 천수유동 수치모형 (A three-dimensional numerical model for shallow water flows using a free surface correction method)

  • 장원재;이승오;조용식
    • 한국방재학회:학술대회논문집
    • /
    • 한국방재학회 2007년도 정기총회 및 학술발표대회
    • /
    • pp.181-185
    • /
    • 2007
  • A free-surface correction(FSC) method is presented to solve the 3-D shallow water equations. Using the mode splitting process, FSC method can simulate shallow water flows under the hydrostatic assumption. For the hydrostatic pressure calculation, the momentum equations are firstly discretized using a semi-implicit scheme over the vertical direction leading to the tri-diagonal matrix systems. A semi-implicit scheme has been adopted to reduce the numerical instability caused by relatively small vertical length scale compare to horizontal one. and, as the free surface correction step the final horizontal velocity fields are corrected after the final surface elevations are obtained. Finally, the vertical final velocity fields can be calculated from the continuity equation. The numerical model is applied to the calculation of the simulation of flow fields in a rectangular open channel with the tidal influence. The comparisons with the analytical solutions show overall good agreements between the numerical results and analytical solutions.

  • PDF

Three-Dimensional Flow Analysis and Improvement of Slip Factor Model for Forward-Curved Blades Centrifugal Fan

  • Guo, En-Min;Kim, Kwang-Yong
    • Journal of Mechanical Science and Technology
    • /
    • 제18권2호
    • /
    • pp.302-312
    • /
    • 2004
  • This work developed improved slip factor model and correction method to predict flow through impeller in forward-curved centrifugal fan. Both steady and unsteady three-dimensional CFD analyses were performed to validate the slip factor model and the correction method. The results show that the improved slip factor model presented in this paper could provide more accurate predictions for forward-curved centrifugal impeller than the other slip factor models since the present model takes into account the effect of blade curvature. The correction method is provided to predict mass-averaged absolute circumferential velocity at the exit of impeller by taking account of blockage effects induced by the large-scale backflow near the front plate and flow separation within blade passage. The comparison with CFD results also shows that the improved slip factor model coupled with the present correction method provides accurate predictions for mass-averaged absolute circumferential velocity at the exit of impeller near and above the flow rate of peak total pressure coefficient.

벨리 스팅 모형 지지부의 간섭 효과 보정기법 연구 (The correction of support interference effect of belly sting)

  • 김남균;안승기
    • 한국항공우주학회지
    • /
    • 제30권8호
    • /
    • pp.30-36
    • /
    • 2002
  • 풍동시험 모형은 모형 지지부 삽입 등으로 실제 비행체와 다른 형상을 갖게 된다. 이러한 형상의 차이는 비행시험과 다른 힘과 모멘트를 발생시키게 되므로 이에 대한 보정은 필수적이다. 이러한 보정에는 cavity 압력 보정, 모형 지지부 간섭 보정 등이 있다. 본 시험에 사용된 모형은 내장밸런스와 함께 벨리 스팅 지지부를 사용하였으며 보정을 위하여 모형지지부 두께변화 방법과 더미 스팅 방법, wire support 방법의 시험결과를 비교하였다. 모형 지지부 두께 변화 방법은 간섭이 거의 없는 것으로 알려진 wire support 방법과 시험결과가 잘 일치하였다.