• 제목/요약/키워드: Pressure Coefficient

검색결과 2,837건 처리시간 0.033초

송출공의 회전이 송출계수와 압력계수에 미치는 영향 (The Effect of Rotation of Discharge Hole on the Discharge Coefficient and Pressure Coefficient)

  • 하경표;구남희;고상근
    • 대한기계학회논문집B
    • /
    • 제27권7호
    • /
    • pp.948-955
    • /
    • 2003
  • Pressure coefficient in rotating discharge hole was measured to gain insight into the influence of rotation to the discharge characteristics of rotating discharge hole. Pressure measurements were done by the telemetry system that had been developed by the authors. The telemetry system measures static pressure using piezoresistive pressure sensors. Pressure coefficients in rotating discharge hole were measured in longitudinal direction and circumferential direction with various rotating speed and 3 pressure ratios. From the results, the pressure coefficient, and therefore the discharge coefficient, is known to decrease with the increase of Ro number owing to the increase of flow approaching angle to the discharge hole inlet. However, there exists critical Ro number where the decrease rate of discharge coefficient with the increase of Ro number changes abruptly; flow separation occurs from the discharge hole exit at this critical Ro number. Critical Ro number increases with the increase of length-to-diameter ratio, but the increase is small where the length-to-diameter ratio is higher than 3. The decrease rate of discharge coefficient with the increase of Ro number depends on the pressure recovery at the discharge hole, and the rate is different from each length-to-diameter ratio; it has tendency that the short discharge hole shows higher decrease rate of discharge coefficient.

Natural wind impact analysis of transiting test method to measure wind pressure coefficients

  • Liu, Lulu;Li, Shengli;Guo, Pan;Wang, Xidong
    • Wind and Structures
    • /
    • 제30권2호
    • /
    • pp.199-210
    • /
    • 2020
  • Building wind pressure coefficient transiting test is a new method to test the building wind pressure coefficient by using the wind generated by a moving vehicle, which is susceptible to natural wind and other factors. In this paper, the Commonwealth Advisory Aeronautical Research Council standard model with a scale ratio of 1:300 is used as the test object, and the wind pressure coefficient transiting test is repeated under different natural wind conditions to study the influence of natural wind. Natural wind is measured by an ultrasonic anemometer at a fixed location. All building wind pressure coefficient transiting tests meet the test conditions, and the vehicle's driving speed is 72 km/h. The mean wind pressure coefficient, the fluctuating wind pressure coefficient, and the correlation coefficient of wind pressure are used to describe the influence of natural wind on the building wind pressure coefficient transiting test qualitatively and quantitatively. Some rules, which can also help subsequent transiting tests, are also summarized.

태양열 집열판에 작용하는 풍압계수 분포 특성 (Characteristics of Wind Pressure Distributions Acting on Solar Collector Plate)

  • 유기표;김영문;유장열
    • 한국공간구조학회논문집
    • /
    • 제13권2호
    • /
    • pp.67-73
    • /
    • 2013
  • This paper attempted to bridge this gap by identifying the number of flat-plate solar collectors. The characteristics of wind pressure coefficients acting on flat-plate solar collectors which are most widely used were investigated for various wind direction. Findings from this study found that the location where the maximum wind pressure coefficient occurred in the solar collector was the edge of the collector. Regarding the characteristics according to the number of collectors, the paper found that downward wind pressure coefficient of the lower edge of the collector was higher than the upward wind pressure coefficient of the upper edge of the collector in the basic module (1 piece). However, as the number of collectors increases, the upward wind pressure coefficient of the upper edge become higher than the downward wind pressure coefficient of the lower edge. Finally yet important, it was found that the location of the maximum wind pressure coefficient was changed according to the number of solar collectors.

쌍곡선포물선 대공간 구조물의 측벽개구율에 따른 지붕의 풍압특성 (Characteristic of Wind Pressure Distribution on the Roof of Hyperbolic Paraboloid Spatial Structures)

  • 유장열;유기표
    • 한국공간구조학회논문집
    • /
    • 제13권1호
    • /
    • pp.51-57
    • /
    • 2013
  • There can be diverse causes in the destruction of a large space structure by strong wind such as characteristics of construction materials and changes in internal and external wind pressure of the structure. To evaluate the wind pressure of roof against the large space structure, wind pressure experiment is performed. However, in this wind pressure experiment, peak internal pressure coefficient is set according to the opening of the roof in Korea wind code. In this article, it was tried to identify the change of internal pressure coefficient and the characteristics of wind pressure coefficient acting on the roof by two kinds of opening on the side of the structure with Hyperbolic Paraboloid Spatial Structures roof. When analyzing internal pressure coefficient according to roof shape, it was found that minimum (52%) and maximum (30%~80%) overestimation was made comparing to partial opening type proposed in the current wind load. It is judged that evaluation according to the opening rate of the structure should be made to evaluate the internal pressure coefficient according to load.

관통형과 단부형 필로티 천장부의 피크풍압계수 특성 분석 (Analysis of Peak Wind Pressure Coefficients of Penetration Type and End Type Pilotis)

  • 유장열;김근호;채명진;김영문;유기표
    • 한국공간구조학회논문집
    • /
    • 제18권2호
    • /
    • pp.59-67
    • /
    • 2018
  • Various pilotis are installed in the lower part of high rise buildings. Strong winds can generate sudden airflow around the pilotis, which can cause unexpected internal airflow changes and may cause damage to the exterior of the piloti ceiling. The present study investigates the characteristics of peak wind pressure coefficient for the design of piloti ceiling exteriors by conducting wind pressure tests on high rise buildings equipped with penetration-type and end-type pilotis in urban and suburban areas. The minimum peak wind pressure coefficient for penetration-type piloti ceilings ranges from -2.0 to -3.3. Minimum peak wind pressure coefficient in urban areas was 30% larger than in suburban areas. In end-type piloti ceilings, maximum peak wind-pressure coefficient ranges from 0.5 to 1.9, and minimum peak wind-pressure coefficient ranges from -1.3 to -3.6. With changes in building height, peak wind pressure coefficient decreases as the aspect ratio increases. Peak wind-pressure coefficient increases with taller pilotis. On the other hand, when piloti height decreases, the absolute value of the minimum peak wind pressure coefficient increases.

투과플럭스 실험으로부터 콜로이드 서스펜션의 삼투압과 입자의 구배확산계수 산출을 위한 수치적 해석 (A Numerical Analysis for Estimations of Osmotic Pressure of Colloidal Suspension and Gradient Diffusion Coefficient of Particles from Permeate Flux Experiments)

  • 전명석
    • 멤브레인
    • /
    • 제12권2호
    • /
    • pp.90-96
    • /
    • 2002
  • 멤브레인 여과 실험에서 얻어진 데이터 처리에 간단한 수치해석을 적용하여 삼투압(osmotic pressure) 과 구배확산계수(gradient diffusion coefficient)를 도출하는 새로운 방법론을 제시하였다. 삼투압과 구배확산계수는 이론 및 실험적으로 쉽게 구할 수 없는 물리적 특성치로서 멤브레인 여과의 특성 규명에 중요하다. 모델 라텍스 콜로이드의 여과시간에 따른 투과플럭스(permeate flux) 값과 이에 대한 수치적분과 수치미분 데이터로부터 분산된 입자농도의 함수인 삼투압 관계식을 구했다. 이로부터 계산된 열역학적 계수(thermodynamic coefficient)는 입자농도가 증가할수록 감소하는 거동을 보였고, 여기에 기존에 제시되어 있는 수력학적 계수(hydrodynamic coefficient)를 도입하여 구배확산계수를 산출하였다. 아울러, 본 연구에서 계산된 입자농도에 따른 구배확산계수의 결과와 동일한 멤브레인과 라텍스 콜로이드의 여과에 대해서 기존에 통계역학적 시뮬레이션으로 예측한 결과를 비교하였다.

무선계측기법을 이용한 회전 송출공의 압력계수 측정 (Measurement of Pressure Coefficient in Rotating Discharge Hole by Telemetric Method)

  • 구남희;고상근;하경표
    • 대한기계학회논문집B
    • /
    • 제27권9호
    • /
    • pp.1248-1255
    • /
    • 2003
  • Pressure coefficient in a rotating discharge hole was measured to gain insight into the influence of rotation on the discharge characteristics of rotating discharge holes. Pressures inside the hole were measured by a telemetry system that had been developed by the authors. The telemetry system is characterized by the diversity of applicable sensor type. In the present study, the telemetry system was modified to measure static pressure using piezoresistive pressure sensors. The pressure sensor is affected by centrifugal force and change of orientation relative to the gravity. The orientation of sensor installation for minimum rotating effect and zero gravity effect was found out from the test. Pressure coefficients in a rotating discharge hole were measured in longitudinal direction as well as circumferential direction at various rotating speeds and three different pressure ratios. From the results, the behaviors of pressure coefficient that cannot be observed by a non-rotating setup were presented. It was also shown that the discharge characteristics of rotating discharge hole is much more influenced by the Rotation number irrespective of pressure ratio.

정지토압계수 측정에 관한 연구 1 (A Study on the Measuring about the Coefficient of Earth Pressure at Rest 1)

  • 송무효
    • 한국해양공학회지
    • /
    • 제15권4호
    • /
    • pp.92-100
    • /
    • 2001
  • It is very important to determine the coefficient of earth pressure at rest accurately in order to estimate the behavior of soil structure. For estimation of K/sub 0/-value depending upon the stress history of dry sand, a new type of K/sub 0/-oedeometer apparatus is devised, and the horizontal earth pressure is accurately measured. For this study, 2 types of one-cyclic K/sub 0/-Loading/unloading models have been studied experimentally using four relative densities of the sand. The results obtained in this test are as follows : K/sub on'/ the coefficient of earth pressure at - rest for virgin loading is a function of the angle of internal friction Φ' of the sand and is determined as K/sub on/=1 - 0.914 sin Φ', K/sub ou'/ the coefficient of earth pressure at rest for virgin unloading is a function of K/sub on/ and over consolidation ratio(OCR), and is determined as K/sub ou/=K/sub on/(OCR)K/sup a/. The exponent α, increases as the relative density increases. K/sub or'/ the coefficient of earth pressure at rest for virgin reloading decreases in hyperbola type as the vertical stress, σ/sub v/’, increases. And, the stress path at virgin reloading leads to the maximum prestress point, independent upon the value of the minimum unloading stress. The gradient of this curve, m/sub r/ increases as OCR increases.

  • PDF

대형 공동 수조에서의 변동 압력 계측 (Measurement of Cavitation-Induced Pressure Fluctuation in a Large Cavitation Tunnel)

  • 나윤철;강관형;김영기;이무열
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 춘계학술대회논문집
    • /
    • pp.791-796
    • /
    • 2000
  • The cavitation-induced fluctuating pressure of the container ship named "Sydney Express" is measured in Samsung Large Cavitation Tunnel(SCAT). In the measurements, a complete ship model is employed. The effects of thrust coefficient and cavitation number on cavity pattern and cavitation-induced fluctuating pressure were investigated experimentally. It is demonstrated that the fluctuating pressure coefficient is very sensitive to the cavitation number. The results of cavitation and pressure fluctuations are compared with those of ITTC and HSVA, which shows fairly good agreement. It is exhibited that the removal of rudder can significantly change the loading condition of a propeller, and can reduce the fluctuating pressure coefficient almost by half.

  • PDF

축류압축기 익렬에서의 역류 유동 특성에 대한 수치적 연구 (Numerical Study on Reverse Flow Charcteristics in an Axial Compressor Cascade)

  • 손창현
    • 대한기계학회논문집B
    • /
    • 제24권5호
    • /
    • pp.615-622
    • /
    • 2000
  • Numerical simulation is performed with Denton's code to get pressure loss coefficients in wide range of reverse flow incidence(from -90 degree to +85 degree) for an axial compressor cascade. As a results, it is found that the pressure loss coefficient is increased with incidence and there exist critical incidence which corresponds to the maximum pressure loss coefficient. Pressure loss coefficient with bigger incidence than its critical value is decreased. The effect of increasing incidence in a cascade extremely reduce the mass flow rate by the large flow separation region. Consequently this effect reduce the portion of dynamic pressure in the total pressure loss and beyond the critical incidence the pressure loss coefficient decrease.