• Title/Summary/Keyword: Pressure Chamber

Search Result 2,134, Processing Time 0.031 seconds

Pressure Rise in the Thermal Expansion Chamber With Arc (유부하시의 열팽창분사식 소호부내의 상승압력)

  • Park, K.Y.;Song, K.D.;Shin, Y.J.;Chang, K.C.;Kim, K.S.;Kim, J.K.
    • Proceedings of the KIEE Conference
    • /
    • 1995.07c
    • /
    • pp.1344-1346
    • /
    • 1995
  • The interrupting capability of gas circuit breakers(GCB) are critically dependent on the pressure rise of the puffer cylinder or the thermal expansion chamber at current zero. Therefore it's very useful for the designers to know the pressure rise there at the design stage. Much effort has been done to predict the pressure rise in the puffer cylinder or the thermal expansion chamber in no-load condition. Thus, we now calculate it with reasonable accuracy with the simple programs coded by ourselves or with the commercial CFD packages. However, it has been still difficult problem to calculate it under the existence of arc. In this paper, we propose a method which can be used to predict the pressure rise in the thermal expansion chamber of thermal expansion type GCB. The method has been applied to the 25.8kV 25kA thermal expansion type model GCB and the calculated results have been compared with those from experiment.

  • PDF

Macroscopic Characteristics of Evaporating Dimethyl Ether(DME) Spray (Dimethyl Ether(DME)의 증발과 거시적 분무 특성)

  • Yu, Jun;Lee, Ju-Kwang;Bae, Choong-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.3
    • /
    • pp.58-64
    • /
    • 2003
  • Dimethyl Ether(DME) has been considered as one of the most attractive alternative fuels for compression ignition engine. Its main advantage in diesel engine application is high efficiency of diesel cycle with soot free combustion though conventional fuel injection system has to be modified due to the physical properties of DME. Experimental study of DME and conventional diesel spray employing a common-rail type fuel injection system with a 5-hole sac type injector was performed in a constant volume vessel pressurized by nitrogen gas. Spray cone angles and penetrations of the DME spray were characterized and compared with those of diesel. For evaluation of the evaporating characteristics of the DME, shadowgraphy technique employing an Ar-ion laser and an ICCD camera was adopted. Tip of the DME spray was formed in mushroom-like shape at atmospheric chamber pressure, which disappeared in higher chamber pressure. Spray tip penetration and spray cone angle of the DME became similar to those of diesel under 3MPa of chamber pressure. Higher injection pressure provided wider vapor phase area while it decreased with higher chamber pressure condition.

Numerical simulation on starting transients in supersonic exhaust diffuser; evolution of internal shock structures with different initial cell pressures (초음속 디퓨져 시동 과정에 관한 수치 모사; 초기 진공도에 따른 디퓨져 내부 충격파 구조의 발달 과정)

  • Park Byung-Hoon;Lim Ji-Hwan;Yoon Woong-Sup
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.46-55
    • /
    • 2005
  • For the sea-level performance test of rocket motor designed to operate in the upper atmosphere, ejectors with no induced secondary flow are generally used, which serves dual purposes of evacuating the test cell and performing as a supersonic exhaust diffuser (SED). The main concern of this research is to simulate starting transients in order to visualize evolution of internal shock structures in SED with different initial cell (vacuum chamber) pressures. RANS code with low Reynolds $k-\varepsilon$ turbulence model was employed for these computations. Numerical results were compared with the pressure measurements previously performed [Proceedings of 2004 Annual Conference, KIMST], and showed good agreements with pressure-time history of measured data. In the case of low vacuum chamber pressure, abrupt impingement of the under-expanded supersonic jet from the nozzle onto the diffuser wall was observed, whereas initial impingement point was located downstream and moved slowly upstream in the case of non-vacuum chamber pressure. In spite of initially dissimilar evolution of shock structures, iso-mach contour revealed that the steady shock structures had little difference except the location of flow separation and normal shock.

  • PDF

Study on Properties of Interior Ballistics According to Ignition-Gas Injections (점화제 주입에 따른 강내탄도 성능해석)

  • Jang, Jin-Sung;Sung, Hyung-Gun;Lee, Sang-Bok;Roh, Tae-Seong;Choi, Dong-Whan
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.1
    • /
    • pp.22-29
    • /
    • 2011
  • Using the numerical code for the interior ballistics, the performance of the interior ballistics with the characteristic of the ignition-gas injections has been investigated. The ignition gas has been assumed to be injected into the chamber with 3 cases. As the results of analysis, when the ignition-gas has been injected into all chamber area, the pressure distributions of the chamber of the interior ballistics have been uniform and the differential pressure has been stable. The ignition-gas has been injected into the partial area of the chamber, however, the pressure distributions and the differential pressure have been unstable. The case using the longer ignition injector, therefore, seems to be more suitable to improve the stability of the interior ballistics.

An Experimental Study on Static Characteristics of Servo Valves using Transmission Line Pressures (배관 압력을 이용한 서보밸브 정적 특성에 관한 실험적 연구)

  • Kim, Sung Dong;Joo, Byeol Jin;Yun, So Nam
    • Journal of Drive and Control
    • /
    • v.13 no.2
    • /
    • pp.42-50
    • /
    • 2016
  • The conventional technique to measure the hysteresis and the null of servo valves is defined in ISO 10770-1 and based on load flow signal of the servo valve. A new technique based on the transmission line pressures is suggested in this study. The new measuring method was verified through a series of experiments. No hysteresis was observed between the spool displacement and the transmission line pressures, load pressure or each chamber pressure. Some hysteresis was observed between valve input and pressures, which was found to be the same as those of load flow and spool displacement for the valve input. By using the chamber pressures, the hysteresis and the null are easier to measure than the load pressure or differential pressure between those two chamber pressures because the chamber pressures showed sharp edges.

Numerical Study on the Adverse Pressure Gradient in Supersonic Diffuser (초음속 디퓨져 내부 역압력 구배에 대한 수치적 연구)

  • Kim, Jong Rok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.4
    • /
    • pp.43-48
    • /
    • 2013
  • A study is analyzed on the adverse pressure gradient and the transient regime of supersonic diffuser with Computational Fluid Dynamic. The flow field of supersonic diffuser is calculated using Axisymmetric two-dimensional Navier-Stokes equation with $k-{\epsilon}$ turbulence model. The transient simulation is compared in terms of mach number and static temperature of vacuum chamber according to pressure variation of rocket engine combustion chamber. Combustion gas flow into the vacuum chamber during operation of the supersonic diffuser. According to this phenomenon, the pressure and the temperature rise in the vacuum chamber were observed. Thus, the protection system will be necessary to prevent the pressure and temperature rise in the transition process during operation of the subsonic diffuser.

Change of Main Body Temperature and Reduction of Energy Consumption in a 1 Tube 2 Chamber Bent Silkworm Type Dyeing Machine

  • Lee, Choon-Gil;Woo, Kyung-Sung
    • Fashion & Textile Research Journal
    • /
    • v.4 no.6
    • /
    • pp.550-556
    • /
    • 2002
  • The changes of the main body temperature of a I tube 2 chamber bent silkworm type dyeing machine and the reduction of energy consumption of the dyeing machine by the energy saving design are reported. This dyeing machine was developed for the purpose of the energy saving and high efficiency. In this study, the changes of the main body temperature of the 1 tube 2 chamber bent silkworm type dyeing machine were studied experimentally. Especially the effect of the blower motor electric current and the main body pressure at various blower frequencies were studied experimentally. In the experimental data for the changes of main body temperature, it was shown that the main body temperature increased as the blower motor electric current and the main body pressure increased.

A Study on the Combustion Characteristics of Methane-air Mixture in Constant Volume Combustion Chamber (정적 연소실내의 메탄-공기 혼합기의 연소 특성에 관한 연구)

  • 이창식;김동수;오군섭
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.4
    • /
    • pp.201-209
    • /
    • 1996
  • This study describes the combustion characteristics of methance-air mixture with various equivalence retio and initial conditions of mixture in constant volume combustion chamber. Combustion characteristics of methane-air mixture such as combustion pressure, combustion temperature, and heat release were investigated by the measurement of combustion pressure and temperature in the combustion chamber. The results show that maximum combustion pressure, gas temperature and rate of heat release have peaks at equivalence ratio of 1.1. Combustion duration is also the shortest at the equivalence ratio of 1.1 and it is shortened as initial mixture temperature increases.

  • PDF

A Study on Correlation between A/F and ion signal in a Constant-Volume Chamber Using Spark-plug Ionization Probe Itself (정적챔버에서 스파크 플러그 이온프로브를 이용한 공연비와 이온신호와의 상관관계에 대한 연구)

  • Park, Jong-Il;Chun, Kwang-Min;Hahn, Jae-Won;Park, Chul-Woong
    • 한국연소학회:학술대회논문집
    • /
    • 2002.11a
    • /
    • pp.223-229
    • /
    • 2002
  • Spark plug ionization signal could be useful in an internal combustion engine as a feedback signal for combustion diagnostics such as misfire detection, knocking detection and lambda control, but the signal has high level of cyclic fluctuation in an internal combustion engine due to residual gas, pressure, temperature, mixture composition in the spark gap. Because of this reason it is very difficult to apply ion signal to commercial engine control. In this Study, a correlation between A/F and spark plug ionization signal was studied in a constant volume chamber. Constant volume chamber with gas phase fuel(Propane) has homogeneous fuel composition , no mixture flow, same pressure and temperature on each test. The results show that mean chemi-ion signal has the highest correlation with A/F and intial pressure change has on effect on the thermal-ion signal and not on chemi-ion signal.

  • PDF

Driving Characteristics of a 1 Tube 2 Chamber Bent Silkworm Type Dyeing Machine (1 튜브 2 챔버 Bent Silkworm형 염색기의 구동특성)

  • 이춘길;성우경;이광수
    • Textile Coloration and Finishing
    • /
    • v.11 no.2
    • /
    • pp.64-74
    • /
    • 1999
  • The driving characteristics of the 1 tube 2 chamber bent silkworm type dyeing machine are reported. This dyeing machine is a newly developed energy saving machine. In this study, the driving characteristics of the 1 tube 2 chamber bent silkworm type dyeing machine are examined. Specially the relationship between main body pressure and the electric current of the blower motor, the relationship between main body pressure and the air pressure of the blower nozzle, the effect of the air pressure of the blower on the running speed of the fabric, and the effect of main body temperature were discussed experimentally. Through the experimental data, the following results were obtained. 1. Blower motor electric current and blower nozzle air pressure increased as main body pressure increased due to the temperature increase of the main body. 2. The running speed of the fabric increased as blower nozzle air pressure increased. The difference in running speed between winch reel driving and no winch reel driving at a blower frequency of 60Hz was higher than that of 70Hz. 3. The electric current of the blower rioter and blower nozzle air pressure increased rapidly at the initial state. As the experimental time passed, the main body pressure increased slowly. as the main body temperature increased.

  • PDF