• Title/Summary/Keyword: Pressure Balance

Search Result 837, Processing Time 0.027 seconds

An Experiment on the Effects of Free Stream Turbulence Intensity on the Backward-Facing Step Flow (자유흐름 난류강도가 후향계단유동에 미치는 영향에 대한 실험)

  • 김사량;유정열
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.9
    • /
    • pp.2297-2307
    • /
    • 1995
  • An experimental study on the structure of a separated shear layer downstream of the backward-facing step has been performed by examining mean flow and turbulent quantities in terms of free stream turbulence. When free stream turbulence exists, the entrainment rate of the separated shear layer and the flow rate in the recirculation region are enhanced, resulting in shorter reattachment length. The production and diffusion terms in the turbulent kinetic energy balance are shown to increase more than the dissipation term does. Rapid decrease of the pressure-strain term in the shear stress balance implies the enhancement of the three-dimensional motion by free stream turbulence.

Development of Energy Balance Program for Staged-Combustion Cycle of Liquid Rocket Engine (액체로켓엔진 통합 설계를 위한 에너지 발란스 프로그램 개발)

  • Lee, Sang-Bok;Roh, Tae-Seong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.93-97
    • /
    • 2010
  • The energy balance program which can balance the relations among energy, mass flow, pressure in the staged-combustion cycle of the liquid rocket engine has been developed. The modular approach has been chosen for the analysis; the engine cycle consists of the elements from the predefined component analysis program. The engine with the staged-combustion cycle has been decomposed into several principal component modules, such as a thruster chamber, turbopumps, turbines, supply system components and a pre-burner. The program has been verified with comparison of the results to the selected data of the space shuttle main engine.

  • PDF

HFFB technique and its validation studies

  • Xie, Jiming;Garber, Jason
    • Wind and Structures
    • /
    • v.18 no.4
    • /
    • pp.375-389
    • /
    • 2014
  • The high-frequency force-balance (HFFB) technique and its subsequent improvements are reviewed in this paper, including a discussion about nonlinear mode shape corrections, multi-force balance measurements, and using HFFB model to identify aeroelastic parameters. To apply the HFFB technique in engineering practice, various validation studies have been conducted. This paper presents the results from an analytical validation study for a simple building with nonlinear mode shapes, three experimental validation studies for more complicated buildings, and a field measurement comparison for a super-tall building in Hong Kong. The results of these validations confirm that the improved HFFB technique is generally adequate for engineering applications. Some technical limitations of HFFB are also discussed in this paper, especially for higher-order mode response that could be considerable for super tall buildings.

Effects of an Ankle Foot Orthosis with Ankle Angles on Balance Performance in Healthy Adults

  • Kim, Chung-Sun;Park, Sang-Young
    • Journal of the Ergonomics Society of Korea
    • /
    • v.30 no.2
    • /
    • pp.291-296
    • /
    • 2011
  • This study was designed to investigate the effects of an ankle foot orthosis(AFO) with variable ankle joint angles on balance performance in healthy adults. Eighteen healthy adults were recruited in this repeated measures design with subjects as their own controls. An AFO with four kinds of ankle joint angles(-5, 0, 5, and 10 degree) were used and balance performance was measured during single limb standing. Three trials were obtained and then averaged for data analysis. Foot pressure was measured using an F-scan system and muscle activity was measured using an MP150 system. There were significant differences in balance performance with ankle joint angles. An AFO with -5 degrees was associated with significant increases in postural sway(anterior-posterior), and in muscle activity for the medial gastrocnemius and tibialis anterior compared with other degrees of angle. Findings of this study show that angles of an AFO are related to balance performance and a joint angle of 10 degree is effective for promoting joint stability and postural control. This information can be used by clinicians to prescribe AFOs.

Immediate Effect of Eye Movement on Static Balance according to Age in Elderly Individuals

  • Seo, Seung-Hee;Bae, Hwi-Bin;Cho, Yea-Jin;Bae, Young-Sook
    • The Journal of Korean Physical Therapy
    • /
    • v.28 no.5
    • /
    • pp.274-278
    • /
    • 2016
  • Purpose: This study investigated changes in static balance during eye movement while in an upright standing position and compared static balance in elderly individuals according to age. Methods: A total of 154 elderly persons (male 23, female 136) were enrolled in the study. Participants followed an eye movement program that consisted of randomly occurring pursuit eye movement and saccadic eye movement. Participants were asked to remain in the double-leg standing position for 2 minutes 30 second while fixating their eyes on a specific target, after which they were instructed to perform eye movements for 2 minutes and 30 seconds. Static balance was measured in terms of the area, length, and average speed (cm/s) of the center of pressure (COP) displacement before and after eye movement intervention with the eyes open. Results: The area, length, and velocity of COP displacement improved significantly (p< 0.01) after intervention. No significant differences among age groups were observed. Conclusion: The results indicated that eye movement was an effective intervention for improving static balance in elderly persons.

The Incipient Deformation Analysis for Plane Strain Open-Die Forging Processes with V-shaped Dies Using the Force Balance Method (힘평형법을 이용한 V-형다이 평면변형 자유형 단조공정의 초기변형 해석)

  • Lee, J.H.;Kim, B.M.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.4
    • /
    • pp.109-117
    • /
    • 1993
  • Force balance method is employed to predict forging information such as forging load, tool pressure and normal stress at the surface of tangential velocity discontinuity. The incipient stages of deformation for the plane strain forging of rectangular billets in V-shaped dies of different semi-angles are analysed. To construct an approximate model for the analysis of deformation by the force balance method in the incipient deformation stages, slip-line field is used. When the deformation mode by slip-line method is the same as that by force balance method, the slip-line method and the force balance method give identical solutions. The effects of die angle, coefficient of friction, billet geometries and deforma- tion characteristics are also investigated. In order to verify the validity of force balance analysis, the rigid-plastic finite element simulation for the various forgig parameters are performed and performed and find to be in good agreement.

  • PDF

Quantitative Analysis of Postural Balance Training using Virtual Bicycle System (가상 자전거 시스템을 이용한 자세균형 훈련의 정량적 분석)

  • 김종윤;송철규;홍철운;김남균
    • Journal of Biomedical Engineering Research
    • /
    • v.23 no.3
    • /
    • pp.207-216
    • /
    • 2002
  • This Paper describes a quantitative analysis of Postural balance training using virtual bicycle system. We have used a virtual bicycle system that combines virtual reality technology with a bicycle . In this experiment, 20 normal adults were tested to investigate the influencing factors on Postural balance. Several factors including cycling time. cycling velocity. number of times of Path deviation, center of Pressure(COP) . and weight shift were extracted and evaluated to quantify the extent of control. Also, To improve the effect of balance training, we investigated the usefulness of visual feedback information by weight shift The results showed that the system was effective Postural balance rehabilitation training device and. in addition. the analysis method might have a wider applicability to the rehabilitation field.

The Immediate Effects of Neck and Trunk Stabilization Exercises on Balance and Gait in Chronic Stroke Patients

  • Choe, Yu-Won;Kim, Myoung-Kwon
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.15 no.4
    • /
    • pp.37-45
    • /
    • 2020
  • PURPOSE: The purpose of this study was to identify the effects of neck stabilization exercise combined with trunk stabilization exercise on balance and gait function in patients with chronic stroke. METHODS: Twenty-two chronic stroke patients were included in this study. The experimental group subjects (n = 11) performed neck stabilization (15 min) and trunk stabilization (15 min) exercises, while the control group subjects (n = 11) performed trunk stabilization exercise only for 30 min. Before and after the intervention, the subjects underwent static balance and gait testing. RESULTS: The 95% confidence ellipse area, center of pressure (COP) path length, and COP average velocity were significantly lower in both groups after the intervention compared to before intervention (p < .05). The average stance force on the affected side increased significantly in both groups after the intervention (p < .05). The changes in the static balance variables were larger in the experimental group than in the control group. The cadence, gait velocity, and single leg support increased significantly in both groups after intervention (p < .05). The changes in the gait variables were larger in the experimental group than in the control group. CONCLUSION: Trunk stabilization is a beneficial intervention, but the combination of neck stabilization with trunk stabilization is a more effective method to increase the gait and static balance in chronic stroke patients.

The Effect of Animal Physiotherapy on Balance and Walking in Dog with Sciatic Nerve Injury and Degenerative Joint Disease, Case Report

  • Lee, Shinho;Cha, Yuri
    • Physical Therapy Rehabilitation Science
    • /
    • v.11 no.3
    • /
    • pp.279-284
    • /
    • 2022
  • Objective: This study was conducted to confirm the effect of physiotherapy on the balance and walking in dog with sciatic nerve injury and degenerative arthritis of stifle joints. Design: Single case study Methods: The dog walked abnormally for six months and was administrated in S animal hospital. The dog's right hindlimb was operated for cranial cruciate ligament repair and the dog had been taking a nonsteroidal anti-inflammatory analgesic before being refered. There was severe degenerated osteoarthritis in the right hindlimb. During stance and walking, the right hindlimb was often shown partial weight bearing. The dog's left hindlimb was shown plantigrade stance and walking. The radiograph was shown an intact calcaneal tendon in the left hindlimb. In the neurologic examination, sciatic nerve injury in the left hindlimb was confirmed. The dog was treated using muscle strengthening, proprioceptive exercise, underwater treadmill and Laser therapy two, or three times a week for 3 months. At the 10th and 17th treatment, it was evaluated through stance and gait analyzer system to measure dog's balance and walking. Results: 3 months following physiotherapy, the dog's balance was improved in center of pressure(COP). And peak vertical force(PVF), vertical impulse(VI) was increased in right hindlimb and double stance was decreased. Conclusions: Physiotherapy may have improved the prognosis in this dog with severe osteoarthritis and sciatic nerve injury. This study suggested that animal physiotherapy is a valuable way to improve balance and walking.

Convergence Effects of Treadmill Training on Plantar Pressure, Lower Limb Muscle Function, and Balance in Chronic Stroke : A Meta-Analysis (만성 뇌졸중 환자의 트레드밀 훈련이 족저압, 하지 근 기능, 균형에 미치는 융복합적 효과 : 메타분석)

  • Choi, Ki-Bok;Cho, Sung-Hyoun
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.5
    • /
    • pp.87-96
    • /
    • 2020
  • The purpose of this study is to evaluate the convergence effectiveness of treadmill training in patients with chronic stroke through a meta-analysis. After searching the literature based on the patients, intervention, comparison, outcome criteria, and study desigan, a total of 22 studies related to "stroke" and "treadmill" were eligible for inclusion. Effect size was calculated using the comprehensive meta-analysis program for the meta-analysis. Based on the forest plot results, the overall effect size of treadmill training was 0.661 (95% confidence interval: 0.456-0.865), which was statistically significant with a medium effect size (p < 0.05). The effects of treadmill training on patients with stroke were separated by dependent variables of interest-plantar pressure (1.147), lower limb muscle function (0.875), and balance (0.664). The effect sizes were evaluated for the subdomains of timed up and go test (0.553), Berg Balance Scale (0.760), and static balance index (0.654) for balance. Therefore, treadmill training can be expected to have a positive impact on improving the quality of life of patients with chronic stroke. This meta-analysis of treadmill training may the lead to an industry paradigm shift toward healthcare convergence of information, communication, and medical technology.