• Title/Summary/Keyword: Pressure Back Flow

Search Result 254, Processing Time 0.029 seconds

Numerical Study on the Characteristics of Dual-Mode Scramjet Isolator (이중 모드 스크램제트 격리부 특성에 대한 수치해석적 연구)

  • Deng, Ruoyu;Kim, Heuy Dong;Jin, Yingzi
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.5
    • /
    • pp.31-36
    • /
    • 2015
  • As one of the most promising propulsive systems in the future, the dual-mode scramjet engine has drawn the attention of many researches. Detailed flow features concerned with the isolator play an important role in the dual-mode scramjet system. The 2D numerical method has been used for the dual-mode scramjet with wind tunnel. To validate the ability of the numerical model, numerical results have been compared with the experimental results. Overall pressure distributions show quite good match with the experimental results. Back pressure has been studied for maximum pressure rising. According to the results, pressure distribution of supersonic inlet section is not influenced by back pressure. The shock train is pushed towards upstream as the back pressure increases. The maximum value of back pressure without inlet unstart goes up rapidly and then keeps constant when the isolator length increases. The optimal length of isolator section ($L/H_{th}$) is 8.7 in this model.

Two-Dimensional Flow Behavior Through a Stage of an Axial Compressor (축류 압축기내의 2차원 유동 특성)

  • Hong, Seong-Hun;Baek, Je-Hyeon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.8
    • /
    • pp.2561-2571
    • /
    • 1996
  • The flow in the turbomachinery is very unsteady due to the stator-rotor interaction. It has been indicated that the stator-rotor interaction has three distinct causes of unsteadiness: that is, the viscous vortex shedding, wake rotor interaction and potential stator-rotor interaction. In this paper, the mechanism of unsteady potential interaction and wake interaction in the stator-rotor stage flow is numerically investigated in two-dimensional view point. The numerical technique used is the upwind scheme of Van Leer's Flux Vector Splitting(FVS) and cubic spline interpolation is applied on zonal interface. Then, the flow field of a compressor stage composed of NACA 65410 is analyzed. Flow fields are found to be simulated reasonably by this method and the sensitivity due to back-pressure variation is more stronger than rotor-velocity variation.

Analysis on the Flow and the Byproduct Particle Trajectory of Roots Type Vacuum Pump (루츠식 진공 펌프의 유동 및 부산물 입자 궤적에 대한 해석)

  • Lee, Chan;Kil, Hyun-Gwon;Noh, Myung-Keun
    • The KSFM Journal of Fluid Machinery
    • /
    • v.14 no.5
    • /
    • pp.18-23
    • /
    • 2011
  • A CFD analysis method is developed and applied for investigating the gas flow and the byproduct particle trajectory in Roots type vacuum pump. The internal fluid flow and thermal fields between the rotors and the housing of vacuum pump are analyzed by using the dynamic mesh, the numerical methods for unsteady 2-D Navier-Stokes equation and the standard k-$\varepsilon$ turbulence model of the Fluent code. Coupled with the flow simulation results, the particle trajectory of the byproduct flowing into the pump with gas stream is analyzed by using discrete phase modeling technique. The CFD analysis results show the pressure, the velocity and the temperature distributions in pump change abruptly due to the rotation of rotors, and back flows are produced due to the strong reverse pressure gradients at rotor/rotor and rotor/housing clearances. The predicted byproduct particle trajectory results also show the particles impinge on the clearance surfaces between the housing and the rotor of pump and then may form the deposit layer causing the failure of pump.

Effect of geometrical parameters of reentry capsule over flowfield at high speed flow

  • Mehta, R.C.
    • Advances in aircraft and spacecraft science
    • /
    • v.4 no.4
    • /
    • pp.487-501
    • /
    • 2017
  • The main purpose of the paper is to analyze effect of geometrical parameters of the reentry capsules such as radius of the spherical cap, shoulder radius, back shell inclination angle and overall length on the flow field characteristics. The numerical simulation with viscous flow past ARD (Atmospheric Reentry Demonstrator), Soyuz (Russian) and OREX (Orbital Reentry EXperimental) reentry capsules for freestream Mach numbers range of 2.0-5.0 is carried out by solving time-dependent, axisymmetric, compressible laminar Navier-Stokes equations. These reentry capsules appear as bell, head light and saucer in shape. The flow field features around the reentry capsules such as bow shock wave, sonic line, expansion fan and recirculating flow region are well captured by the present numerical simulations. A low pressure is observed immediately downstream of the base region of the capsule which can be attributed to fill-up in the growing space between the shock wave and the reentry module. The back shell angle and the radius of the shoulder over the capsule are having a significant effect on the wall pressure distribution. The effects of geometrical parameters of the reentry capsules will useful input for the calculation of ballistic coefficient of the reentry module.

Performance of Absorption Diffuser Silencers (흡음형 디퓨저 소음기의 성능)

  • 정갑철;현승일;이종우;권영필
    • Journal of KSNVE
    • /
    • v.4 no.3
    • /
    • pp.377-384
    • /
    • 1994
  • This paper is an investigation of the performance of absorption diffusers to suppress the vent noise emitted when high pressure gas is throttled. First, experiment for the static performance is carried out. When there is no through-flow, the insertion loss has been obtained in terms of 1/3 octave band spectrum and the effect of the number of diffusers and the thickness of the absorption material on the static performance has been obtained. And the similarity in the spectrum of the static insertion loss is confirmed by comparing two similar models with different size. Second, the dynamic performance has been obtained by experiment using blow-down of compressed air from a storage tank through an orifice of diameter 10 mm. The back pressure by the diffuser is measured and compared with that of a single diffuser. It is found that the insertion loss of asingle diffuser is very low around 3 dB at high frequencies with negative value at low frequencies. By absorption material between the diffuser tubes, however, the performance is increased considerably. Without flow the static insertion loss increases by 3 - 4 dB by doubling the thickness or the density of the absorptionmaterial. With flow, however, the dynamic insertion loss increases. While, the back pressure by the diffuser is small enough to be neglected.

  • PDF

Computational Analysis of 3-Dimensional Viscous Flow within Centrifugal Compressors (원심압축기 내부유동의 점성 3차원 해석)

  • Park, Mu-Ryong;Choe, Beom-Seok;Yun, Ui-Su
    • 연구논문집
    • /
    • s.24
    • /
    • pp.107-117
    • /
    • 1994
  • In aerodynamic design of centrifugal compressors, impellers are designed through preliminary design and blade profile generation. In order to find out faults of the initially designed impellers, the detailed informations about internal flow phenomena such as pressure distribution, flow separation, blade loading, etc are essential. These informations can be acquired with flow measurements or computational flow analyses. In this study, we calculated 3-D viscous flow in 4 back-swept impellers which were designed in our laboratory, and analyzed the flow characteristics which influence the performance of impellers.

  • PDF

Study of the Unsteady Gas Flow in a Critical Nozzle (임계노즐에서 발생하는 비정상유동에 관한 연구)

  • Kim, Jae-Hyung;Kim, Heuy-Dong;Park, Kyung-Am
    • 유체기계공업학회:학술대회논문집
    • /
    • 2002.12a
    • /
    • pp.337-345
    • /
    • 2002
  • The present study addresses a computational result of unsteady gas flow through a critical nozzle. The axisymmetric, unsteady, compressible, Wavier-Stokes equations are solved using a finite volume method that makes use of the second order upwind scheme for spatial derivatives and the multi-stage Runge-Kutta integral scheme for time derivatives. The steady solutions of the governing equation system are validated with the previous experimental data to ensure that the present computational method is valid to predict the critical nozzle flows. In order to simulate the effects of back pressure fluctuations on the critical nozzle flows, an excited pressure oscillation with an amplitude and frequency is assumed downstream of the exit of the critical nozzle. The results obtained show that for low Reynolds numbers, the unsteady effects of the pressure fluctuations can propagate upstream of the throat of critical nozzle, and thus giving rise to the applicable fluctuations in mass flow rate through the critical nozzle, while for high Reynolds numbers, the pressure signals occurring at the exit of the critical nozzle do not propagate upstream beyond the nozzle throat. For very low Reynolds number, it is found that the sonic line near the throat of the critical nozzle remarkably fluctuateswith time, providing an important mechanism for pressure signals to propagate upstream of the nozzle throat, even in choked flow conditions. The present study is the first investigation to clarify the unsteady effects on the critical nozzle flows.

  • PDF

Study of the Operation Characteristics of the Supersonic Steam Ejector System (초음속 증기 이젝터 시스템의 작동 특성에 관한 연구)

  • 김희동;이준희;우선훈;최보규
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.5 no.3
    • /
    • pp.33-40
    • /
    • 2001
  • In order to investigate the operating characteristics of a supersonic steam ejector, the axisymmetric, compressible, Reynolds-averaged, Wavier-Stokes computations are performed using a finite volume method. The secondary and back pressures of the ejector system with a second throat are changed to investigate their effects on the suction mass flow. Three operation modes of the steam ejector system, the critical mode, subcritical mode and back flow mode, are discussed to predict the critical suction mass flow. The present computations are validated with some experimental results. The secondary and back pressures of the supersonic steam ejector significantly affect the critical suction mass flow. The present computations predict the experimented critical mass flow with fairly good accuracy A good correlation is obtained for the critical suction mass flow. The present results show that provided the primary nozzle configuration and secondary pressure are blown, we can predict the critical mass flow with good accuracy.

  • PDF