• Title/Summary/Keyword: Pressing Load

Search Result 84, Processing Time 0.024 seconds

The Study of Pullout-Behavior Characteristics of The Ground Anchor Using Expanded Hole (확공을 이용한 지압형 앵커의 인발거동 특성 연구)

  • Min, Kyong-Nam;Jung, Chan-Mook;Jung, Dae-Ho
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.1502-1508
    • /
    • 2011
  • Ground anchor expands the hollow wall of settled part and has the structure which resists the designed tensile load by the bearing pressure generated by the wedge of the anchor body pressing in the expanded part. Such ground anchor has been recognized for stability and economicality since 1960s in technologically advanced nations such as Japan and Europe, and in 1970s, the Japan Society of Soil Engineering has established and announced the anchor concept map. The ground anchor introduced in Korea, however, has the structural problem where the tensile strength is comes only from the ground frictional force due to expansion of the wedge body. In an interval where the ground strength is locally reduced due to fault, discontinuation or such, this is pointed out as a critical weakness where the anchor body of around 1.0m must resist the tensile load. Also, in the installation of concrete block, the concentrated stress of concrete block constructed on the uneven rock surface causes damage, and many such issues in the anchor head have been reported. Thus, in this study, by using the expanded bit for precise expansion of settled part, the ground anchor system was completed so that the bearing pressure of ground anchor can be expressed as much as possible, and the bearing plate was inserted into the ground to resolve the existing issues of concrete block. Through numerical analysis and pullout test executed for verification of site applicability, the pullout-behavior characteristics of anchor was analyzed.

  • PDF

Split Die Design for ECAP with Lower Loads (등통로각압축 공정용 저하중 분리형 금형 설계)

  • Jin, Young-Gwan;Kang, Seong-Hoon;Son, Il-Heon;Im, Yong-Taek
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.3
    • /
    • pp.217-222
    • /
    • 2008
  • Equal channel angular pressing (ECAP) is one of the effective methods to produce bulk-nano materials by accumulating plastic strain into the workpiece without changing its cross-sectional shape in the multi-pass processing. However, the forming load becomes higher for manufacturing large specimens using conventional solid or split dies because of friction, flash formation, and usage of dummy specimen. In the present investigation, better split die was designed to reduce the forming loads and improve the geometrical accuracy of the specimen in the multi-pass ECAP. The new die exit channel was also designed to reduce the friction effect. Experiments with AA1050 specimens with a square cross-section were carried out to examine the design goal using the proposed split dies for routes A and C up to four passes. The numerical forming simulations were used to determine the effective geometry of various die models in the present work.

A Case Study on the Application of EPS Construction Method Considering Abutment Displacement in Soft Ground (연약지반에서의 교대변위를 고려한 EPS공법의 적용사례 연구)

  • Kang, Hee-June;Oh, Ill-Rok;Chae, Young-Su
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.698-705
    • /
    • 2004
  • Application of structural load on soft ground can cause lateral movement as well as ground break due to pressing and shearing of ground. Especially, abutment supported by pile foundation can make pile deformed due to lateral movement of ground in order to have harmful effect on structure. According to the result of this study, it is required to consider disturbance of weak soil layer when using lateral movement countermeasure method by EPS construction method as a result of performing study on safety review and EPS construction method with respect to this based on site where lateral movement occurs due to backside soil filling load at bridge abutment installed on weak ground, and it is required to sufficiently consider soil reduction during design of EPS construction method due to lateral movement deformation of soft clay layer by losing ground horizontal resistance force due to plasticity of ground around pile as well as combination part damage with pile head and expansion foundation.

  • PDF

The Effects of Welding Clearance and bending moment on Spot Weldability (점용접 간극과 굽힘 모멘트가 용접성에 미치는 영향)

  • Lim, Jae-Kyoo;Song, Jun-Hee;Kuk, Jung-Ha;Yang, Seung-Hyon
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.55-60
    • /
    • 2001
  • The automobile is made up of thousands of parts. Some parts are formed by pressing and combined by spot welding. To find weldability conditions of spot welding, clearance between two welding plates was made and after spot welding, weldability is evaluated by means of tensile shear load, nugget size and shape. Specimen used in this study was a steel plate of 1.2mm thickness and electrode was Cu-Cr alloy of 6mm diameter. When spot welding started, the clearance of two specimens was changed 0mm, 3mm and 5mm and distance from vise to measure influence of bending moment 25mm, 45mm, 65mm step by step. The fractured surface of specimen after this test was observed by Optical Microscope to measure microstructure and nugget shape. When clearance of two specimen was 3mm and 5mm, strength and nugget size was decreased and nugget shape was not clear. The much bending moment and crosshead speed are the much tensile shear load is.

  • PDF

Determination of Forming Conditions of Fitting Pipes using Press Forming Processes (프레스 포밍 공정을 이용한 피팅 파이프 성형 조건 선정)

  • Kim, Tae-Gual;Park, Young-Chul;Park, Kyoung-Yong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.1
    • /
    • pp.101-106
    • /
    • 2012
  • The press bulging process is very useful and productive method to produce round-type mechanical components which have not been able to be manufactured because of limitation of the conventional press technology. The application of the press bulging process has expanded very quickly in the hydraulic and electronic industry and more recently it has been used to produce other mechanical parts such as the automobile and shipping parts. This expanding application also has brought some unsolved problems and leads many researchers to put their effort into the die design of the press bulging process. In this study, to obtain the optimum die shape for the press bulging process, various process parameters have been considered such as corner radius, bulging height, pressing length, and forming load, etc. The main interest of this paper is to verify the press bulging process which has more than 4.0 in height-length ratio. From this aspect, Finite Element analysis shows great ability to simulate the precise deformation process and gives us manufacturing database. Consideration of strain, stress, and strain-rate for the various cases has been also taken to keep the forming load within a particular range.

Small Agricultural Skid-steer Loader Using Belt Clutch Power Transmission (벨트클러치 전동방식의 농업용 소형 스키드 스티어 로더)

  • 김상헌;신범수;정준모;김창식
    • Journal of Biosystems Engineering
    • /
    • v.21 no.2
    • /
    • pp.134-145
    • /
    • 1996
  • Since the skid-steer loader is able to work for excavating, lifting and transporting load even at the narrow space, they are widely used in the regular farm and the livestock farm. The skid-steer loader normally adopts the hydrostatic transmission because the power to move the machine backward and forward should be delivered independently on both sides of wheels. Contrast to the mechanical system such as chain and belt transmissions, however, the hydrostatic transmission is less efficient in the use of energy and more difficult in the maintenance. This study was intended to investigate the feasibility of using triangular-type belt clutch and V-belt transmission for the newly developed skid-steer loader in order to overcome the problems stated in the hydrostatic transmission. In the developed triangular-type belt clutch, the centers of driving, driven and idler sheaves are arranged in the triangular shape in a plane, and V-belts were loaded loosely on three sheaves. The power is transmitted by pressing the idler connected to a lever on the loosened V-belt. Contrast to the normal belt clutch using two sheaves, the newly developed belt clutch has the characteristics of small contact-angle of the driving sheave at no bucket load and increasing contact-angle at the time of power transmission. The results of research can be summarized as follows: 1) The developed triangular-type belt clutch adopted a spring-loaded slackside idler which could transmit more power than a fixed idler could by sacrificing the belt life. The life of V-belt used in the power transmission reached at 500 hours(6 months) when the engine power of 11.8 ㎾ was transmitted. Also, it was feasible to develop the large industrial skid-loader with the V-belt transmission by using the proper set of sheaves. 2) The developed skid-steer loader changed the rotating radius and speed with bucket loads as the conventional skid steer loader did. The rotating speed was 47 deg/s at the maximum bucket load of 2.74 kN when the minimum rotating radius was 1.5m. 3) The power required in turning at the bucket load of 2.74 kN was 4 ㎾ and the slippage of V-belt was less than 1%.

  • PDF

Method of Friction Energy Dissipation and Crack Analysis under Partial Slip (부분 미끄럼 상태에서의 마찰에너지 방출 및 균열해석 방법)

  • 김형규
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1999.06a
    • /
    • pp.38-46
    • /
    • 1999
  • Numerical methods are procured for evaluating the contact stresses, the dissipation of friction energy density and the fatigue cracking emanated from the contact surface under the partial slip condition. A rounded punch is used for the indenter pressing and slipping on the elastic half plane. Plane strain condition is assumed for the present analysis. Several sample calculations are carried out to investigate the effect of the punch roundness, the shear load path, and the crack obliquity and closure on the failure. It is found that the present methods can be a useful tool for studying the physical failure of the of the contacting materials such as fretting wear and fretting fatigue cracking.

  • PDF

Impact Fracture Characteristics on Fabricating Process of $Nb/MoSi_2$ Laminate Composite (I)

  • Lee, Sang-Pill;Yoon, Han-Ki
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.8
    • /
    • pp.823-829
    • /
    • 2000
  • [ $Nb/MoSi_2$ ]laminate composites have been successfully fabricated by hot pressing in a graphite mould. Lamination of Nb foil and $MoSi_2$ layer showed a sufficient improvement in the absorbed impact energy compared to that of monolithic $MoSi_2$ material. The impact value of $Nb/MoSi_2$ laminate composites obviously is reduced when sintered at temperatures higher than 1523K, even if the composite density contributing to impact load increased along with fabricating temperatures. Impact value of laminate composites was also drastically decreased with the growth of reaction layer after the heat treatment. However, it was effective to increase the pressure at the same sintering temperature for the improvement of the impact value.

  • PDF

Vibration characteristics test of two types bogie frame of a freight car on Kyeungbu line (경부선을 주행하는 두 종류의 화차 대차프레임의 진동특성시험 및 진동증가 원인파악에 관한 연구)

  • 홍재성;함영삼;백영남;오택열
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1323-1326
    • /
    • 2004
  • A bogie frame of welded type have some problems. Some end beam has cracked. The cracks have profound influence on the safe freight service. The bogie consists of a frame, suspensions, brakes and wheel sets. Various analyses including a numerical simulation using a finite element method, a static load test, a fatigue test, and running test should be carried out to design the bogie. However cracks have been found at some end beams of the bogies mounted on the freight cars running with the high speed. The cracks of the end beam results in deterioration of the brake performance and the running safety. Numerical simulations and dynamic tests are carried out to figure out the causes of cracks in the existing bogie, and the vibrational characteristics of the improved bogie are compared with those of the conventional one. In this reports, the vibration characteristics were dealed with the most pressing matters for the solution of the end beam crack.

  • PDF

Damage Tolerance in Hardly Coated Layer Structure with Modest Elastic Modulus Mismatch

  • Lee, Kee-Sung
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.11
    • /
    • pp.1638-1649
    • /
    • 2003
  • A study is made on the characterization of damage tolerance by spherical indentation in hardly coated layer structure with modest elastic modulus mismatch. A hard silicon nitride is prepared for the coating material and silicon nitride with 5wt% of boron nitride composites for underlayer. Hot pressing to eliminate the effect of interface delamination during the fracture makes strong interfacial bonding. The elastic modulus mismatch between the layers is not only large enough to suppress the surface crack initiation from the coating layer but sufficiently small to prevent the initiation of radial crack from the interface. The strength degradation of the layer structure after sphere contact indentation does not significantly occur, while the degradation of silicon nitride-boron nitride composite is critical at a high load and high number of contacts.