• Title/Summary/Keyword: Preshear stress

Search Result 2, Processing Time 0.016 seconds

Preshear Influence for Liquefaction Resistance in Sand (사질지반에서 액상화 저항에 대한 선행전단응력의 영향)

  • 윤여원;김한범;김방식
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.315-322
    • /
    • 2003
  • Cyclic simple shear tests were performed to find out the effect of preshear on dynamic strength of the sandy soil. Tests were performed for the specimens with 40% and 60% of relative density, under three different effective vertical stress of 50, 100 and 200kPa. For 50 and 100kPa, preshear ratios 0.00, 0.08, 0.12 and 0.16 were given, respectively, For low and high relative densities, two different results are shown in dynamic tests. Under the dense conditions, the maximum shear stress ratio($\tau$$\_$cyc//$\sigma$$\_$vo/) and the cyclic shear stress ratio($\tau$$\_$cyc//$\sigma$$\_$vo/) causing a certain shear strain increase with augmenting preshear ratio(${\alpha}$). However, the maximum shear stress ratio and the cyclic shear stress ratio increase or decrease with increasing preshear ratio under the loose conditions. Correction factor(K$\_$${\alpha}$/) for preshear increases at an early stage and then decreases with increasing preshear ratio at loose condition and increase with increasing preshear ratio at dense condition. Correction factor (K$\_$${\alpha}$,Max/) for preshear increases with the increasing preshear ratio irrespective of relative density, and the value of has same behavior as K$\_$${\alpha}$/.

  • PDF

Effect of Pre-shearing and Temperature on the Yield Stress of Stirred Yogurt

  • Yoon, Won Byong
    • Food Engineering Progress
    • /
    • v.13 no.1
    • /
    • pp.70-73
    • /
    • 2009
  • The yield stress of stirred yogurt was measured by the vane viscometer at different pre-shearing conditions, such as pre-shear speed, pre-shear time, and wait time, and temperature (12-38${^{\circ}C}$). The yield stress ranged from ~17.6 to 10 Pa and from 34.2 to 11.9 Pa, depending on the pre-shearing conditions and temperature, respectively. The preshear speed and the wait time significantly affected the yield stress. The temperature dependence of the yield stress was described by the Eyring's kinetic model. The linear function of the temperature on the yield stress was limited at the 22${^{\circ}C}$, and at the above 22${^{\circ}C}$, the yield stress was maintained to be a constant (~12.5 Pa).