• 제목/요약/키워드: Preprocessing System

검색결과 712건 처리시간 0.028초

KOMPSAT 광학영상을 이용한 광범위지역의 도시개발 변화탐지 (Change Detection of Urban Development over Large Area using KOMPSAT Optical Imagery)

  • 한유경;김태헌;한수희;송정헌
    • 대한원격탐사학회지
    • /
    • 제33권6_3호
    • /
    • pp.1223-1232
    • /
    • 2017
  • 본 연구는 KOMPSAT 광학영상을 이용하여 광범위지역에 대한 도시개발 변화를 탐지하는 방법론을 제시한다. 다른 시기에 취득된 KOMPSAT 영상 간의 방사적인 불일치를 최소화하기 위해서, 본 연구에서는 광범위지역에 대한 변화탐지에 적합한 영역별 간이 방사보정을 전처리과정으로 적용하였다. 도시개발에 대한 변화탐지 결과정확도를 향상시키기 위해서, 환경부에서 제공하는 중분류 토지피복도를 이용하여 수계, 산림과 같은 비관심지역을 제거하였다. 대표적인 변화탐지 기법인 분광변화벡터분석(Change Vector Analysis, CVA) 기법을 적용하여 도시개발에 의해 발생한 변화를 탐지하였다. 제안 기법에 대한 적용을 위해 세종시를 연구지역으로 선정하였으며, 2007년 5월과 2016년 5월에 KOMPSAT-2호로 취득한 영상과 2014년 3월에 KOMPSAT-3호로 취득한 영상을 조합하여 총 세 실험지역을 구축하였다. 2007년 5월 KOMPSAT-2호 영상과 2014년 3월 KOMPSAT-3호 영상으로 구성된 실험지역에 대한 변화탐지 정확도 평가를 수행한 결과, 약 91.00%의 변화탐지 전체정확도를 보였다. 본 연구를 통해 넓은 지역에 대량으로 발생한 도시개발 변화를 효과적으로 탐지할 수 있음을 확인하였다.

이동 프로젝터 투사영역의 폐회로 기반 위치추적에 의한 인터랙티브 투사 (Interactive Projection by Closed-loop based Position Tracking of Projected Area for Portable Projector)

  • 박지영;이선민;김명희
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제37권1호
    • /
    • pp.29-38
    • /
    • 2010
  • 본 연구에서는 영상을 대형으로 디스플레이 함과 동시에 사용자가 보다 세밀하게 관찰하고자하는 관심영역을 이동 프로젝터로 투사함으로써 개선된 해상도와 밝기로 디스플레이 하는 인터랙티브 투사 기법을 제안한다. 사용자는 이동 프로젝터를 들고 움직이며 관심영역의 위치를 변경하게 되는데 이 때 적절히 투사영상을 업데이트하기 위해 폐회로(closed-loop) 기반 추적 방법을 제안한다. 먼저 대형 디스플레이 영상에 이동 프로젝터의 위치를 나타내는 표시자를 삽입하고 이를 이동 프로젝터에 부착된 카메라로 획득한 연속영상에서 추출한다. 표시자의 중심이 항상 카메라 영상의 중심과 일치하도록 하는 제약조건 하에서 이를 만족시키기 위해 대형 디스플레이 상에서 표시자의 위치를 지속적으로 업데이트 한다. 이렇게 계산된 표시자의 위치에 해당하는 사각형 영역을 이동 프로젝터가 투사하게 되며 이때 카메라와 이동 프로젝터 사이의 투사변환을 적용하여 와핑한다. 표시자 분할은 총 네 단계로 이루어지며 카메라 영상에 대해 HSI 기반 전처리, 직선 탐지, 사각형 조건 검사, 교차비(cross-ratio) 검사를 거쳐 최종 네 개의 코너점이 결정된다. 제안된 투사 기법을 적용하여 구현한 인터랙티브 투사 시스템은 약 24fps의 처리속도를 지원하며 사용자 평가 결과 높은 유용성을 나타냈다.

고속처리 자동차 번호판 인식시스템 (A High Performance License Plate Recognition System)

  • 남기환;배철수
    • 한국정보통신학회논문지
    • /
    • 제6권8호
    • /
    • pp.1352-1357
    • /
    • 2002
  • 본 논문에서는 차량의 후면에서 촬영한 영상을 이용하여 효과적으로 번호판을 추출하고, 그 안에 표기된 문자를 인식하는 방법을 제안한다. 기존의 연구방법은 전체영상에 대하여 전처리를 수행하여 에지(edge)영상을 구하여 이진화한다. 이진화된 영상에서 허프(Hough)변환을 수행하여 수평, 수직선을 구하고, 번호판의 특징을 이용하여 번호판 영역을 추출한다 이 방법의 문제점은 처리시간이 많이 소요되므로 실시간 처리가 곤란하다는 점과 야간관 같이 명암상태가 불규칙하고 영상에서 번호판 테두리가 나타나지 않으면 번호판 영역추출을 할 수 없다는 점이다. 또한 차량의 후면에서 촬영한 영상에서 번호판 영역의 명암값 변화의 특성을 이용하여 번호판 영역에서 숫자폭, 배경영역과 숫자영역의 명암차를 조사하여 숫자영역임을 확인하고, 확인된 숫자와 숫자사이의 거리를 조사하여 번호판 영역을 추출한다. 본 연구는 기존방법의 번호판 테두리 훼손에 따른 번호판 영역추출 실패의 문제점을 해결하고 시간 소요의 문제를 실시간 안에 처리함으로써 실용적 응용이 가능하다. 실험 결과 100장의 샘플영상으로 실험한 결과 멀리 있는 자동차 영상에서도 자동으로 번호판을 판독할 수 있었으며, 번호판 추출에 실패한 영상은 13%를 나타내었고, 문자 인식에 실패한 영상은 0.4%의 결과를 나타내었다

부분공간과 LVQ 분류기에 기반한 실시간 얼굴 인식 (Real-Time Face Recognition Based on Subspace and LVQ Classifier)

  • 권오륜;민경필;전준철
    • 인터넷정보학회논문지
    • /
    • 제8권3호
    • /
    • pp.19-32
    • /
    • 2007
  • 본 논문에서는 실시간 얼굴인증 시스템의 구축을 위한 LVQ 신경망 기반의 새로운 얼굴 인식 방법을 제안한다. 기존의 연구에서 PCA, LDA 변환이 많이 적용되며 신경망을 결합한 형태가 제안되고 있지만 신경망 학습 시간이 오래 걸리는 단점을 가지고 있다. LVQ 신경망은 학습 시간이 짧고 클래스간의 분리도를 최대화할 수 있는 교사학습방법이다. 따라서, 본 논문에서 제안된 방법은 동영상으로부터 실시간으로 입력되는 얼굴영상을 PCA와 LDA변환을 순차적으로 적용하여 부분공간상의 변환된 특징벡터로부터 LVQ 신경망의 학습을 통하여 얼굴을 인식한다. 외부조명의 영향에 강건한 인식시스템을 구축하기 위하여 얼굴검출 단계에서 검출된 얼굴영역은 밝기값의 최대-최소 정규화 방법에 의해 보정된 정규화 영상을 생성한다. 정규화된 얼굴영상은 PCA와 LDA 변환을 통해 부분공간상의 특징벡터로 변환된다. 변환된 훈련 데이터로부터 LVQ 신경망의 초기 중심 벡터를 결정하고 신경망의 학습률 향상을 위해 K-Means 클러스터링 알고리즘을 적용하며, 초기 중심 벡터를 이용하여 LVQ2 학습 방법에 의해 학습된 중심벡터는 클래스의 대표 벡터가 된다. 결국 각 클래스의 대표 벡터로부터 입력 영상의 특징벡터간의 유클리디언 거리 비교법을 적용하여 얼굴 인식을 수행한다. ORL 데이터베이스를 이용한 정지 영상에 대한 인식과 실시간으로 입력되는 영상에 대한 인식 등 두 가지 형태의 영상을 기반으로 실험한 결과 두 경우에 모두 제안된 방법이 기존의 인식 방법보다 인식률에서 우수함을 입증할 수 있었다.

  • PDF

조명에 의한 채도 왜곡에 강건한 피부 색상 보정 방법 (The Robust Skin Color Correction Method in Distorted Saturation by the Lighting)

  • 황대동;이근수
    • 한국산학기술학회논문지
    • /
    • 제16권2호
    • /
    • pp.1414-1419
    • /
    • 2015
  • 영상에서 피부영역을 탐지하는 방법은 색상 정보를 이용하여 탐지하는 방법이 일반적이다. 하지만 영상의 채도가 낮아지는 경우 색상정보가 손실되어 올바른 피부영역 탐지가 어렵다는 단점이 있다. 따라서 본 논문은 촬영 시 밝은 조명에 의해 채도 정보가 낮아진 피부 영상의 색상 보정 방법을 제안한다. 제안한 방법의 색상 보정 절차는 채도 영상 획득 및 저채도 영역 분류, 영역 분할, 분할한 저채도 영역에서의 채도 및 색상값 추출, 색상 보정 순이다. 이 방법은 영상에서 채도가 낮은 부분을 추출한 후 해당 영역 및 주변영역의 색상과 채도를 추출하는 방법을 통해 원 색상과 유사한 색상을 예측하여 적용한다. 따라서 저채도 영역을 올바르게 산출하는 방법이 선행되어야 한다. 저채도 영역을 구하는 과정에서 보다 정확한 영역 분할을 위하여 HSV 색상공간의 Hue 값에 오츠가 제안한 다중문턱치를 이용하여 이진 영상을 만든 후 사용하였다. 170장의 인물 사진들을 사용하여 실험을 수행한 결과, 제안한 방법을 사용하지 않은 피부 결과에 비해 약 5.8% 이상 검출율이 높게 나타났으며, 제안하는 방법이 피부색 탐지를 위한 전처리에 적합함을 확인하였다.

수입식품 빅데이터를 이용한 부적합식품 탐지 시스템에 관한 연구 (Study on Anomaly Detection Method of Improper Foods using Import Food Big data)

  • 조상구;최경현
    • 한국빅데이터학회지
    • /
    • 제3권2호
    • /
    • pp.19-33
    • /
    • 2018
  • FTA체결의 증가, 식품교역 증가 및 소비자의 다양한 식품 선호도 등으로 농축수산물 및 가공식품의 수입량은 매년 증가하고 있는 추세이다. 수입식품의 안전성을 확인하는 정밀검사는 전체 수입식품건수 대비 20%정도를 차지하고 계속 증가하고 있는 반면에 정부의 수입안전관리에 필요한 예산과 인력은 그 한계점에 다다르고 있다. 수입식품 안전사고가 발생하게 되면 막대한 사회적, 경제적 손실을 야기할 수 있으므로 수입식품의 수입허용여부를 정확하게 예측하여 선제 대응하는 것은 수입안전관리의 효율성과 경제성을 획기적으로 높일 수 있게 된다. 식품분야에서는 이미 엄청난 양의 정형 데이터가 과거로부터 쌓여 왔으며 이에 대한 충분한 분석을 통한 활용은 아직은 부족한 것이 현실이다. 전체 수입건수와 중량 중에서 차지하는 가공식품의 비중은 평균 75%에 달하고 있어 식품분야에서도 빅데이터의 분석, 분석기법의 적용 등으로 다량의 데이터로부터 의미 있는 정보를 추출하는 과학적이고 자동화된 부적합탐지시스템의 연구가 절실한 상황이다. 이러한 배경에서 본 연구는 기계학습분야의 다양한 부적합 예측 모형을 적용하였으며 예측 모형의 정확도를 개선시키기 위한 방편으로 새로운 파생변수의 생성을 통한 데이터 전처리 방안을 제시하였다. 또한 본 연구에서는 기계학습분야의 일반적인 기저 분류기를 적용하여 예측 모형의 성능을 비교하였으며 여러 기저분류기 중 Gaussian Naïve Bayes예측 모형이 수입식품의 부적합을 탐지하여 예측하는 가장 좋은 성과를 보여주었다. 향후 Gaussian Naïve Bayes 예측 모형을 이용한 부적합 탐지 모형을 적용하여 수입식품의 정밀검사 비중을 낮추고 부적합률을 제고시킴으로써 수입안전관리 국가사무의 효율성과 수입통관의 신속성에 지대한 효과를 거둘 수 있으리라 기대한다.

기계학습을 이용한 식품위생점검 체계의 효율성 개선 연구 (Improving Efficiency of Food Hygiene Surveillance System by Using Machine Learning-Based Approaches)

  • 조상구;조승용
    • 한국빅데이터학회지
    • /
    • 제5권2호
    • /
    • pp.53-67
    • /
    • 2020
  • 본 연구는 가공식품의 제조·가공 업소를 대상으로 기계학습 분야의 지도학습(Supervised Learning) 예측 모형을 적용하여 부적합이 예상되는 업체를 사전에 적발하는 단속 선별시스템을 마련하여 단속 활동의 효율성을 높이고자 하였다. 본 연구에서는 머신러닝의 예측 모델링을 위한 목적 정의, 데이터의 기초 분석과 시각화, 특성 변수 도출 및 예측 모형의 선정 및 예측 등으로 기계학습 수행의 표준적인 절차에 따라 연구를 수행하였다. 종속변수는 2014년도부터 2018년까지 과거 5년 동안 지도점검 적발 건수로 설정하였고, 목적함수는 실제 부적합업체를 사전에 판정하여 단속활동이 이루어지는 것을 최대화하는 것으로 하였다. 제조가공업소의 매출액, 영업일수, 종업원 수 등 기본속성뿐만 아니라 과거 지도점검 단속 이력 정보를 반영하여 자료를 재구성하였다. 특성 변수 추출 방법을 적용하여 부적합 판정에 영향을 미치는 업체 위험, 품목 위험, 환경 위험 및 과거 위반 이력 등을 특성 변수로 도출하여 머신러닝 알고리즘을 데이터에 적용하였다. 랜덤포레스트 모형이 식품의약품안전처 지도점검 업무 목적에 가장 적합한 것으로 나타났다. 본 연구결과를 바탕으로 식품안전 관리 국가 사무가 데이터기반의 과학적인 행정 체계로 발전할 수 있는 기반이 되기를 기대한다.

심층 신경망을 이용한 TBM 데이터 기반의 굴착 지반 예측 연구 (A TBM data-based ground prediction using deep neural network)

  • 김태환;곽노상;김택곤;정사범;고태영
    • 한국터널지하공간학회 논문집
    • /
    • 제23권1호
    • /
    • pp.13-24
    • /
    • 2021
  • 암반 및 연약지반을 포함한 다양한 지반 조건에서 TBM (Tunnel Boring Machine) 터널링이 활용되고 있다. 굴착 성능을 높이기 위해서 지반 조건에 따라 최적으로 장비를 운영해야 하며, 이를 통해 공기단축을 통한 비용 절감 효과를 기대할 수 있다. 하지만 시추 조사를 통해 획득한 지반 정보는 시추공 사이 불확실성이 존재하므로, 실시간 최적 운전에 부족함이 있다. 본 연구에서는 지반의 불확실성 문제를 해결하고자 5초마다 기록된 TBM 데이터를 활용하여 굴착 지반 예측시스템을 구축하고자 한다. 싱가포르 현장에서 획득한 화강암의 풍화도를 고려하여 암반, 토사, 복합지반 세 가지로 지질로 재분류하였고, 실시간으로 도출되는 기계 데이터로 이를 예측하고자 한다. 현장에서 획득한 TBM 데이터에 대해 이상치 제거, 정규화, 특성 추출 등의 전처리 방법을 적용하였고, 지질을 분류하기 위해 6개의 은닉층을 가진 심층 신경망(Deep Neural Network, DNN)을 활용하였다. 10겹 교차검증을 통해 분류 시스템을 평가한 결과, 평균 75.4%의 정확도를 확인하였다(총 데이터 388,639개). 본 연구를 통해 지질 불확실성을 감소시키고, 지반 조건에 따른 실시간 최적 운전에 도움이 될 것으로 판단된다.

변화 주목 기반 차량 흠집 탐지 시스템 (Change Attention-based Vehicle Scratch Detection System)

  • 이은성;이동준;박건희;이우주;심동규;오승준
    • 방송공학회논문지
    • /
    • 제27권2호
    • /
    • pp.228-239
    • /
    • 2022
  • 본 논문에서는 카셰어링 서비스(car sharing service)에서 차량 상태 무인 검수를 위한 흠집 탐지 딥 러닝 모델을 제안한다. 기존의 차량 상태 검수 시스템은 대여 전, 후 사진에서 각각 흠집을 탐지하는 딥 러닝 모델과 탐지된 두 흠집 영상을 수작업으로 대조하여 새롭게 발생한 흠집을 탐색하는 두 단계로 구성되어 있다. 따라서 수동작업이 필요한 두 단계 모델을 한 단계로 줄이는 무인 흠집 탐지 모델을 위성영상에서 변화를 탐지하는 딥 러닝 모델에 전이 학습을 적용하여 구축한다. 그리고 광택 처리된 자동차 표면의 휘도가 비등방성이고 비전문가인 이용자가 일반 카메라로 촬영하기 때문에 정반사(specular reflection)가 흠집 탐지 성능에 크게 영향을 미친다. 따라서 정반사광으로 발생하는 오탐지를 감소시키기 위하여 정반사광 성분을 제거하는 전처리 과정을 적용한다. 이용자가 휴대폰 카메라로 촬영한 데이터에 대해 제안하는 시스템은 주관적인 측면과 정밀도(precision), 재현율(recall), F1, Kappa 척도면에서 각각 67.90%, 74.56%, 71.08%, 70.18%로서 높은 일치도를 보인다.

선박운항데이터 기반 실시간 선박운항효율 분석 모델 개발 (Development of a Real-time Ship Operational Efficiency Analysis Model)

  • 황태민;황효선;윤익현
    • 해양환경안전학회지
    • /
    • 제29권1호
    • /
    • pp.60-66
    • /
    • 2023
  • 현재의 해양산업의 기술은 스마트 선박 및 자율운항선박 등의 개발과 같은 자율화 및 지능화와 환경규제의 강화에 맞추어 선박의 운항 효율성을 개선하는 친환경 선박을 위한 기술이 함께 개발되고 있다. 이러한 흐름에 맞추어, 세계각국에서는 선박의 안전운항을 보장하는 선에서 선박운항효율을 극대화하기 위해 다양한 방식으로 노력하고 있다. 본 연구에서는, 현존하는 선박운항효율 개선 기술이 운항 당시의 기상환경, 선박조종 등의 선박운항상태를 실시간으로 반영하지 못하는 문제를 개선하기 위해, 선박에서 수집한 선박운항데이터를 활용하여 실시간 선박운항효율 분석모델을 개발하고자 한다. 본 연구의 실시간 선박운항효율 분석모델은 연료소모를 기준으로 판단한 선박운항효율과 당시의 선박운항상태를 감안하여 판단한 선박운항효율을 비교하여, 식별된 선박운항효율의 타당성을 확인할 수 있는 모델이다. 분석의 주요 내용은 대상선박의 선정과 선박운항데이터의 수집, 선박운항효율 특성과 선박운항상태 특성의 구분, 그리고 이를 활용한 분류모델의 개발을 포함한다. 연구의 결과는 기존의 선박운항효율과 항해 당시 선박운항상태를 감안한 운항효율을 제시하여 선박 운항자의 의사결정을 지원하여 운항효율을 개선하고자 한다.