• 제목/요약/키워드: Preprocessing Process

검색결과 440건 처리시간 0.026초

광 반사방식을 이용한 감염 씨감자 비파괴 선별 기술 개발 (Development of non-destructive measurement method for discriminating disease-infected seed potato using visible/near-Infrared reflectance technique)

  • 김대용;조병관;이윤수
    • 농업과학연구
    • /
    • 제39권1호
    • /
    • pp.117-123
    • /
    • 2012
  • Pathogenic fungi and bacteria such as Pectobacterium atrosepticum, Clavibacter michiganensis subsp. sepedonicus, Verticillium albo-atrum, and Rhizoctonia solani were the major microorganism which causes diseases in seed potato during postharvest process. Current detection method for disease-infected seed potato relies on human inspection, which is subjective, inaccurate and labor-intensive method. In this study, a reflectance spectroscopy was used to classify sound and disease-infected seed potatoes with the spectral range from 400 to 1100 nm. Partial least square discriminant analysis (PLS-DA) with various preprocessing methods was used to investigate the feasibility of classification between sound and disease-infected seed potatoes. The classification accuracy was above 97 % for discriminating disease seed potatoes from sound ones. The results show that Vis/NIR reflectance method has good potential for non-destructive sorting for disease-infected seed potatoes.

주차보조를 위한 초음파 센서 기반의 주변차량의 주차상태 및 기둥 분류 (Classification of Sides of Neighboring Vehicles and Pillars for Parking Assistance Using Ultrasonic Sensors)

  • 박은수;윤용지;김형래;이종환;기호용;이철희;김학일
    • 제어로봇시스템학회논문지
    • /
    • 제19권1호
    • /
    • pp.15-26
    • /
    • 2013
  • This paper proposes a classification method of parallel, vertical parking states and pillars for parking assist system using ultrasonic sensors. Since, in general parking space detection module, the compressed amplitude of ultrasonic data are received, the analysis of them is difficult. To solve these problems, in preprocessing state, symmetric transform and noise removal are performed. In feature extraction process, four features, standard deviation of distance, reconstructed peak, standard deviation of reconstructed signal and sum of width, are proposed. Gaussian fitting model is used to reconstruct saturated peak signal and discriminability of each feature is measured. To find the best combination among these features, multi-class SVM and subset generator are used for more accurate and robust classification. The proposed method shows 92 % classification rate and proves the applicability to parking space detection modules.

Blood Vessel Enhancement by Directed Diffusion

  • Intajag, S.;Tipsuwanporn, V.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.101-106
    • /
    • 2004
  • In this paper, a blood vessel in an angiographic image, which plays an importance role in the diagnose diseases including in the eyes, brain and heart, is enhanced by using a directed diffusion technique. A fundamental component of the angiographic analysis is vessel segmentation that the proposed method provides a preprocessing of the image into a form suitable for human analysis, or more importantly, for machine analysis such the segmentation. Vessel enhancement is a challenging problem due to the complex nature of vascular trees and to imaging imperfections. Some parts of the inherent imperfections in angiography are the intensity inhomogeneity between the larger and smaller vessels, and another imperfection is the leakage of contrast agent into the background tissue that provides to low contrast between vessels and tissue. In the proposed scheme, the directed diffusion solves the problem by formulating a local geometric structure, which consists of direction and scale of the blood vessels. The diffusion process uses the local structure to enhance by a diffusivity tensor. The proposed algorithm can be applied to maintain sharpness and coherence-smooth the intra-regions into homogeneity better than traditional diffusion methods, which are Gaussian regulation and coherence enhancing diffusion.

  • PDF

기계학습 기반 저 복잡도 긴장 상태 분류 모델 (Design of Low Complexity Human Anxiety Classification Model based on Machine Learning)

  • 홍은재;박형곤
    • 전기학회논문지
    • /
    • 제66권9호
    • /
    • pp.1402-1408
    • /
    • 2017
  • Recently, services for personal biometric data analysis based on real-time monitoring systems has been increasing and many of them have focused on recognition of emotions. In this paper, we propose a classification model to classify anxiety emotion using biometric data actually collected from people. We propose to deploy the support vector machine to build a classification model. In order to improve the classification accuracy, we propose two data pre-processing procedures, which are normalization and data deletion. The proposed algorithms are actually implemented based on Real-time Traffic Flow Measurement structure, which consists of data collection module, data preprocessing module, and creating classification model module. Our experiment results show that the proposed classification model can infers anxiety emotions of people with the accuracy of 65.18%. Moreover, the proposed model with the proposed pre-processing techniques shows the improved accuracy, which is 78.77%. Therefore, we can conclude that the proposed classification model based on the pre-processing process can improve the classification accuracy with lower computation complexity.

CELP 음성부호화기 전송률 감소를 위한 음성신호의 V/UV 결정 알고리즘 (The V/UV Decision Algorithm for a Reduction of the Transmission Bit Rate in the CELP Vocoder)

  • 민소연;김현철
    • 한국항행학회논문지
    • /
    • 제11권1호
    • /
    • pp.87-92
    • /
    • 2007
  • 기존의 CELP 계열 보코더에서, 무성음에 대한 별도의 처리 없이 유성음과 동일하게 처리함으로써 합성음에서 음질의 저하 및 계산량과 전송률 측면에서 손실을 가져왔다. 본 논문에서는 에러율과 전처리 계산량을 최소로 할 수 있는 V/UV 분류기를 사용하여 CELP 보코더에서 전송률을 감소시키는 방법을 제안한다. 새로운 V/UV 분류기는 CELP 보코더에서 사용되는 LSP 파라미터의 주파수영역 분포도와 간격정보를 이용하여 V/UV를 결정하게 된다. 제안한 방법을 G.723.1 5.3kbps ACELP에 적용하여 성능 평가를 실시하였다. 실험결과, 음질의 저하 없이 약 6%의 전송률을 감소할 수 있었다.

  • PDF

퍼지 추론 기법을 이용한 반도체 불량 검사 (A Semiconductor Defect Inspection Using Fuzzy Reasoning Method)

  • 김광백
    • 한국정보통신학회논문지
    • /
    • 제14권7호
    • /
    • pp.1551-1556
    • /
    • 2010
  • 본 논문에서는 굴곡에 의한 조도량의 차이와 명암도 차이를 퍼지 기법에 적용하여 개선된 반도체 불량 검출 방법을 제안한다. 제안된 방법은 먼저 회전각과 양선형 보관법을 이용하여 반도체 영상의 각도를 보정하는 전처리 과정을 수행한다. 그리고 굴곡에 대한 조도량의 차이와 패턴 매칭을 이용하여 얻어진 오류 영역의 명암도 차이를 퍼지 소속 함수에 적용하여 결과 값을 추론한다. 최종적으로 비퍼지화된 결과 값을 적용하여 반도체의 초기 불량을 검출한다. 제안한 방법에서 실제 사용되는 반도체 정면 영상과 측면 영상 30쌍을 대상으로 실험한 결과, 기존의 방법에서 판단된 실제 불량 제품을 모두 검출하였다. 기존의 방법은 1mm내의 미세한 굴곡을 가진 정상 제품을 불량으로 판별하였으나 제안된 방법에서는 오류로 검출하지 않고 정상으로 판별하였다. 따라서 기존의 방법에 비해서 반도체의 초기 불량 판단에 효과적으로 적용될 수 있다는 것을 확인하였다.

Deadline Constrained Adaptive Multilevel Scheduling System in Cloud Environment

  • Komarasamy, Dinesh;Muthuswamy, Vijayalakshmi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제9권4호
    • /
    • pp.1302-1320
    • /
    • 2015
  • In cloud, everything can be provided as a service wherein a large number of users submit their jobs and wait for their services. hus, scheduling plays major role for providing the resources efficiently to the submitted jobs. The brainwave of the proposed ork is to improve user satisfaction, to balance the load efficiently and to bolster the resource utilization. Hence, this paper roposes an Adaptive Multilevel Scheduling System (AMSS) which will process the jobs in a multileveled fashion. The first level ontains Preprocessing Jobs with Multi-Criteria (PJMC) which will preprocess the jobs to elevate the user satisfaction and to itigate the jobs violation. In the second level, a Deadline Based Dynamic Priority Scheduler (DBDPS) is proposed which will ynamically prioritize the jobs for evading starvation. At the third level, Contest Mapping Jobs with Virtual Machine (CMJVM) is roposed that will map the job to suitable Virtual Machine (VM). In the last level, VM Scheduler is introduced in the two-tier VM rchitecture that will efficiently schedule the jobs and increase the resource utilization. These contributions will mitigate job iolations, avoid starvation, increase throughput and maximize resource utilization. Experimental results show that the performance f AMSS is better than other algorithms.

SSA-based stochastic subspace identification of structures from output-only vibration measurements

  • Loh, Chin-Hsiung;Liu, Yi-Cheng;Ni, Yi-Qing
    • Smart Structures and Systems
    • /
    • 제10권4_5호
    • /
    • pp.331-351
    • /
    • 2012
  • In this study an output-only system identification technique for civil structures under ambient vibrations is carried out, mainly focused on using the Stochastic Subspace Identification (SSI) based algorithms. A newly developed signal processing technique, called Singular Spectrum Analysis (SSA), capable to smooth a noisy signal, is adopted for preprocessing the measurement data. An SSA-based SSI algorithm with the aim of finding accurate and true modal parameters is developed through stabilization diagram which is constructed by plotting the identified system poles with increasing the size of data matrix. First, comparative study between different approaches, with and without using SSA to pre-process the data, on determining the model order and selecting the true system poles is examined in this study through numerical simulation. Finally, application of the proposed system identification task to the real large scale structure: Canton Tower, a benchmark problem for structural health monitoring of high-rise slender structures, using SSA-based SSI algorithm is carried out to extract the dynamic characteristics of the tower from output-only measurements.

Biomedical Ontologies and Text Mining for Biomedicine and Healthcare: A Survey

  • Yoo, Ill-Hoi;Song, Min
    • Journal of Computing Science and Engineering
    • /
    • 제2권2호
    • /
    • pp.109-136
    • /
    • 2008
  • In this survey paper, we discuss biomedical ontologies and major text mining techniques applied to biomedicine and healthcare. Biomedical ontologies such as UMLS are currently being adopted in text mining approaches because they provide domain knowledge for text mining approaches. In addition, biomedical ontologies enable us to resolve many linguistic problems when text mining approaches handle biomedical literature. As the first example of text mining, document clustering is surveyed. Because a document set is normally multiple topic, text mining approaches use document clustering as a preprocessing step to group similar documents. Additionally, document clustering is able to inform the biomedical literature searches required for the practice of evidence-based medicine. We introduce Swanson's UnDiscovered Public Knowledge (UDPK) model to generate biomedical hypotheses from biomedical literature such as MEDLINE by discovering novel connections among logically-related biomedical concepts. Another important area of text mining is document classification. Document classification is a valuable tool for biomedical tasks that involve large amounts of text. We survey well-known classification techniques in biomedicine. As the last example of text mining in biomedicine and healthcare, we survey information extraction. Information extraction is the process of scanning text for information relevant to some interest, including extracting entities, relations, and events. We also address techniques and issues of evaluating text mining applications in biomedicine and healthcare.

Broken Detection of the Traffic Sign by using the Location Histogram Matching

  • Yang, Liu;Lee, Suk-Hwan;Kwon, Seong-Geun;Moon, Kwang-Seok;Kwon, Ki-Ryong
    • 한국멀티미디어학회논문지
    • /
    • 제15권3호
    • /
    • pp.312-322
    • /
    • 2012
  • The paper presents an approach for recognizing the broken area of the traffic signs. The method is based on the Recognition System for Traffic Signs (RSTS). This paper describes an approach to using the location histogram matching for the broken traffic signs recognition, after the general process of the image detection and image categorization. The recognition proceeds by using the SIFT matching to adjust the acquired image to a standard position, then the histogram bin will be compared preprocessed image with reference image, and finally output the location and percents value of the broken area. And between the processing, some preprocessing like the blurring is added in the paper to improve the performance. And after the reorganization, the program can operate with the GPS for traffic signs maintenance. Experimental results verified that our scheme have a relatively high recognition rate and a good performance in general situation.