• Title/Summary/Keyword: Preprocessed data

Search Result 188, Processing Time 0.025 seconds

Analysis of Georeferencing Accuracy in 3D Building Modeling Using CAD Plans (CAD 도면을 활용한 3차원 건축물 모델링의 Georeferencing 정확도 분석)

  • Kim, Ji-Seon;Yom, Jae-Hong;Lee, Dong-Cheon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.25 no.2
    • /
    • pp.117-131
    • /
    • 2007
  • Representation of building internal space is an active research area as the need for more geometrically accurate and visually realistic increases. 3 dimensional representation is common ground of research for disciplines such as computer graphics, architectural design and engineering and Geographic Information System (GIS). In many cases CAD plans are the starting point of reconstruction of 3D building models. The main objectives of building reconstruction in GIS applications are visualization and spatial analysis. Hence, CAD plans need to be preprocessed and edited to adapt to the data models of GIS SW and then georeferenced to enable spatial analysis. This study automated the preprocessing of CAD data using AutoCAD VBA (Visual Basic Application), and the processed data was topologically restructured for further analysis in GIS environment. Accuracy of georeferencing CAD data was also examined by comparing the results of coordinate transformation by using digital maps and GPS measurements as the sources of ground control points. The reconstructed buildings were then applied to visualization and network modeling.

Hourly Prediction of Particulate Matter (PM2.5) Concentration Using Time Series Data and Random Forest (시계열 데이터와 랜덤 포레스트를 활용한 시간당 초미세먼지 농도 예측)

  • Lee, Deukwoo;Lee, Soowon
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.9 no.4
    • /
    • pp.129-136
    • /
    • 2020
  • PM2.5 which is a very tiny air particulate matter even smaller than PM10 has been issued in the environmental problem. Since PM2.5 can cause eye diseases or respiratory problems and infiltrate even deep blood vessels in the brain, it is important to predict PM2.5. However, it is difficult to predict PM2.5 because there is no clear explanation yet regarding the creation and the movement of PM2.5. Thus, prediction methods which not only predict PM2.5 accurately but also have the interpretability of the result are needed. To predict hourly PM2.5 of Seoul city, we propose a method using random forest with the adjusted bootstrap number from the time series ground data preprocessed on different sources. With this method, the prediction model can be trained uniformly on hourly information and the result has the interpretability. To evaluate the prediction performance, we conducted comparative experiments. As a result, the performance of the proposed method was superior against other models in all labels. Also, the proposed method showed the importance of the variables regarding the creation of PM2.5 and the effect of China.

Imaging Fractures by using VSP Data on Geothermal Site (지열지대 VSP 자료를 이용한 파쇄대 영상화 연구)

  • Lee, Sang-Min;Byun, Joong-Moo;Song, Ho-Cheol;Park, Kwon-Gyu;Lee, Tae-Jong
    • Geophysics and Geophysical Exploration
    • /
    • v.14 no.3
    • /
    • pp.227-233
    • /
    • 2011
  • Attention has been focused on geothermal energy as an alternative energy because it is continuously operable without external supply. Most of geothermal anomalies in Korea are related to deep circulation of groundwater through a fracture system in granite area. Therefore it is very important to understand the distribution of the fracture system which is the main channel of ground water. In this research, we constructed the velocity models with a fracture system and the layered sediments, respectively, and generated synthetic data sets with them to verify the presented vertical seismic profiling (VSP) preprocessing scheme. We compared the results from conventional VSP preprocessing flow to those from VSP preprocessing flow considering fracture system. We noticed that the preprocessing flow considering fracture system retains more sufficient signal including down-going wave than conventional preprocessing. In addition, we applied 3D VSP prestack phase screen migration to the preprocessed reversed VSP (RVSP) data from Seokmo Island so that we were able to image fracture structure of the geothermal site in Seokmo Island.

Metamorphosis Hierarchical Motion Vector Estimation Algorithm for Multidimensional Image System (다차원 영상 시스템을 위한 변형계층 모션벡터 추정알고리즘)

  • Kim Jeong-Woong;Yang Hae-Sool
    • The KIPS Transactions:PartB
    • /
    • v.13B no.2 s.105
    • /
    • pp.105-114
    • /
    • 2006
  • In ubiquitous environment where various kinds of computers are embedded in persons, objects and environment and they are interconnected and can be used in my place as necessary, different types of data need to be exchanged between heterogeneous machines through home network. In the environment, the efficient processing, transmission and monitoring of image data are essential technologies. We need to make research not only on traditional image processing such as spatial and visual resolution, color expression and methods of measuring image quality but also on transmission rate on home network that has a limited bandwidth. The present study proposes a new motion vector estimation algorithm for transmitting, processing and controlling image data, which is the core part of contents in home network situation and, using algorithm, implements a real time monitoring system of multi dimensional images transmitted from multiple cameras. Image data of stereo cameras to be transmitted in different environment in angle, distance, etc. are preprocessed through reduction, magnification, shift or correction, and compressed and sent using the proposed metamorphosis hierarchical motion vector estimation algorithm for the correction of motion. The proposed algorithm adopts advantages and complements disadvantages of existing motion vector estimation algorithms such as whole range search, three stage search and hierarchical search, and estimates efficiently the motion of images with high variation of brightness using an atypical small size macro block. The proposed metamorphosis hierarchical motion vector estimation algorithm and implemented image systems can be utilized in various ways in ubiquitous environment.

Affinity Analysis Between Factors of Fatal Occupational Accidents in Construction Using Data Mining Techniques (데이터마이닝 기법을 활용한 건설 중대 재해요인 간 연관성 분석)

  • Lim, Jiseon;Han, Sanguk;Kang, Youngcheol;Kang, Sanghyeok
    • Korean Journal of Construction Engineering and Management
    • /
    • v.22 no.5
    • /
    • pp.29-38
    • /
    • 2021
  • Governments and companies are trying to reduce occupational accidents in the construction industry; however, the number of disasters are not decreasing significantly. This study aims to identify the correlation between factors affecting construction disasters quantitatively. To this end, 1,197 cases of serious disasters provided by Korea Occupational Safety and Health Administration (KOSHA) were analyzed using affinity analysis, one of the data mining techniques. The data from KOSHA were preprocessed and analyzed with variables of accident type, project type, activity type, original cause materials, sensory temperature, time of the accident, and fall height, and the association rules were derived for fall accidents and the others. For fall accidents, 64 association rules with lift ratios of 1.38 or greater were derived, and for the other accidents, 59 association rules with lift ratios of 1.54 or greater were derived. After analyzing the derived association rules focusing on the relationship among accident factors, this study presented the significance of applying the affinity analysis to address the study's limitations. The significance of this study can be found in that the correlation among factors affecting construction accidents is presented quantitatively.

Classification of Industrial Parks and Quarries Using U-Net from KOMPSAT-3/3A Imagery (KOMPSAT-3/3A 영상으로부터 U-Net을 이용한 산업단지와 채석장 분류)

  • Che-Won Park;Hyung-Sup Jung;Won-Jin Lee;Kwang-Jae Lee;Kwan-Young Oh;Jae-Young Chang;Moung-Jin Lee
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_3
    • /
    • pp.1679-1692
    • /
    • 2023
  • South Korea is a country that emits a large amount of pollutants as a result of population growth and industrial development and is also severely affected by transboundary air pollution due to its geographical location. As pollutants from both domestic and foreign sources contribute to air pollution in Korea, the location of air pollutant emission sources is crucial for understanding the movement and distribution of pollutants in the atmosphere and establishing national-level air pollution management and response strategies. Based on this background, this study aims to effectively acquire spatial information on domestic and international air pollutant emission sources, which is essential for analyzing air pollution status, by utilizing high-resolution optical satellite images and deep learning-based image segmentation models. In particular, industrial parks and quarries, which have been evaluated as contributing significantly to transboundary air pollution, were selected as the main research subjects, and images of these areas from multi-purpose satellites 3 and 3A were collected, preprocessed, and converted into input and label data for model training. As a result of training the U-Net model using this data, the overall accuracy of 0.8484 and mean Intersection over Union (mIoU) of 0.6490 were achieved, and the predicted maps showed significant results in extracting object boundaries more accurately than the label data created by course annotations.

Matching prediction on Korean professional volleyball league (한국 프로배구 연맹의 경기 예측 및 영향요인 분석)

  • Heesook Kim;Nakyung Lee;Jiyoon Lee;Jongwoo Song
    • The Korean Journal of Applied Statistics
    • /
    • v.37 no.3
    • /
    • pp.323-338
    • /
    • 2024
  • This study analyzes the Korean professional volleyball league and predict match outcomes using popular machine learning classification methods. Match data from the 2012/2013 to 2022/2023 seasons for both male and female leagues were collected, including match details. Two different data structures were applied to the models: Separating matches results into two teams and performance differentials between the home and away teams. These two data structures were applied to construct a total of four predictive models, encompassing both male and female leagues. As specific variable values used in the models are unavailable before the end of matches, the results of the most recent 3 to 4 matches, up until just before today's match, were preprocessed and utilized as variables. Logistc Regrssion, Decision Tree, Bagging, Random Forest, Xgboost, Adaboost, and Light GBM, were employed for classification, and the model employing Random Forest showed the highest predictive performance. The results indicated that while significant variables varied by gender and data structure, set success rate, blocking points scored, and the number of faults were consistently crucial. Notably, our win-loss prediction model's distinctiveness lies in its ability to provide pre-match forecasts rather than post-event predictions.

A demonstration of the H3 trimethylation ChIP-seq analysis of galline follicular mesenchymal cells and male germ cells

  • Chokeshaiusaha, Kaj;Puthier, Denis;Nguyen, Catherine;Sananmuang, Thanida
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.6
    • /
    • pp.791-797
    • /
    • 2018
  • Objective: Trimethylation of histone 3 (H3) at 4th lysine N-termini (H3K4me3) in gene promoter region was the universal marker of active genes specific to cell lineage. On the contrary, coexistence of trimethylation at 27th lysine (H3K27me3) in the same loci-the bivalent H3K4m3/H3K27me3 was known to suspend the gene transcription in germ cells, and could also be inherited to the developed stem cell. In galline species, throughout example of H3K4m3 and H3K27me3 ChIP-seq analysis was still not provided. We therefore designed and demonstrated such procedures using ChIP-seq and mRNA-seq data of chicken follicular mesenchymal cells and male germ cells. Methods: Analytical workflow was designed and provided in this study. ChIP-seq and RNA-seq datasets of follicular mesenchymal cells and male germ cells were acquired and properly preprocessed. Peak calling by Model-based analysis of ChIP-seq 2 was performed to identify H3K4m3 or H3K27me3 enriched regions ($Fold-change{\geq}2$, $FDR{\leq}0.01$) in gene promoter regions. Integrative genomics viewer was utilized for cellular retinoic acid binding protein 1 (CRABP1), growth differentiation factor 10 (GDF10), and gremlin 1 (GREM1) gene explorations. Results: The acquired results indicated that follicular mesenchymal cells and germ cells shared several unique gene promoter regions enriched with H3K4me3 (5,704 peaks) and also unique regions of bivalent H3K4m3/H3K27me3 shared between all cell types and germ cells (1,909 peaks). Subsequent observation of follicular mesenchyme-specific genes-CRABP1, GDF10, and GREM1 correctly revealed vigorous transcriptions of these genes in follicular mesenchymal cells. As expected, bivalent H3K4m3/H3K27me3 pattern was manifested in gene promoter regions of germ cells, and thus suspended their transcriptions. Conclusion: According the results, an example of chicken H3K4m3/H3K27me3 ChIP-seq data analysis was successfully demonstrated in this study. Hopefully, the provided methodology should hereby be useful for galline ChIP-seq data analysis in the future.

Study on the Relations to Estimate Instrumental Seismic Intensities for the Moderate Earthquakes in South Korea (국내 중규모 지진에 대한 계측진도 추정식 연구)

  • Yun, Kwan-Hee;Lee, Kang-Ryel
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.22 no.6
    • /
    • pp.323-332
    • /
    • 2018
  • Recent two moderate earthquakes (2016 $M_w=5.4$ Gyeongju and 2017 $M_w=5.5$ Pohang) in Korea provided the unique chance of developing a set of relations to estimate instrumental seismic intensity in Korea by augmenting the time-history data from MMI seismic intensity regions above V to the insufficient data previously accumulated from the MMI regions limited up to IV. The MMI intensity regions of V and VI was identified by delineating the epicentral distance from the reference intensity statistics in distance derived by using the integrated MMI data obtained by combining the intensity survey results of KMA (Korea Meteorological Administration) and 'DYFI (Did You Feel It)' MMIs of USGS. The time-histories of the seismic stations from the MMI intensity regions above V were then preprocessed by applying the previously developed site-correction filters to be converted to a site-equivalent condition in a manner consistent with the previous study. The average values of the ground-motion parameters for the three ground motion parameters of PGA, PGV and BSPGA (Bracketed Summation of PGA per second for 30 seconds) were calculated for the MMI=V and VI and used to generate the dataset of the average values of the ground-motion parameters for the individual MMIs from I to VI. Based on this dataset, the linear regression analysis resulted in the following relations with proposed valid ranges of MMI. $MMI=2.36{\times}log_{10}(PGA(gal))+1.44$ ($I{\leq}MMI$$MMI=2.44{\times}log_{10}(PGV(kine))+4.86$ ($I{\leq}MMI$$MMI=2.59{\times}log_{10}(BSPGA(gal{\cdot}sec))-1.02$ ($I{\leq}MMI$

Study for Analyzing Defense Industry Technology using Datamining technique: Patent Analysis Approach (데이터마이닝을 통한 방위산업기술 분석 연구: 특허분석을 중심으로)

  • Son, Changho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.10
    • /
    • pp.101-107
    • /
    • 2018
  • Recently, Korea's defense industry has advanced highly, and defense R&D budget is gradually increasing in defense budget. However, without objective analysis of defense industry technology, effective defense R&D activities are limited and defense budgets can be used inefficiently. Therefore, in addition to analyzing the defense industry technology quantitatively reflecting the opinions of the experts, this paper aims to analyze the defense industry technology objectively by quantitative methods, and to make efficient use of the defense budget. In addition, we propose a patent analysis method to grasp the characteristics of the defense industry technology and the vacant technology objectively and systematically by applying the big data analysis method, which is one of the keywords of the 4th industrial revolution, to the defense industry technology. The proposed method is applied to the technology of the firepower industry among several defense industrial technologies and the case analysis is conducted. In the process, the patents of 10 domestic companies related to firepower were collected through the Kipris in the defense industry companies' classification of the Korea Defense Industry Association(KDIA), and the data matrix was preprocessed to utilize IPC codes among them. And then, we Implemented association rule mining which can grasp the relation between each item in data mining technique using R program. The results of this study are suggested through interpretation of support, confidence lift index which were resulted from suggested approach. Therefore, this paper suggests that it can help the efficient use of massive national defense budget and enhance the competitiveness of defense industry technology.