• Title/Summary/Keyword: Prenatal chromosomal microarray analysis

Search Result 5, Processing Time 0.02 seconds

Prenatal chromosomal microarray analysis of fetus with increased nuchal translucency

  • Shim, So Hyun;Cha, Dong Hyun
    • Journal of Genetic Medicine
    • /
    • v.15 no.2
    • /
    • pp.49-54
    • /
    • 2018
  • Nuchal translucency is an important indicator of an aneuploid fetus in prenatal diagnostics. Previously, only the presence of aneuploid could be confirmed by conventional karyotyping of fetuses with thick nuchal translucency. With the development of genetic diagnostic techniques, however, it has been reported that subtle variations not detectable by conventional karyo-typing might occur in cases of pathologic clinical syndrome in euploid fetuses. One of the newer, high-resolution genetic methods in the prenatal setting is chromosomal microarray. The possible association between nuchal translucency thickness with normal karyotype and submicroscopic chromosomal abnormalities detectable by microarray has been studied. How and when to apply microarray in clinical practice, however, is still debated. This article reviews the current studies on the clinical application of microarray in cases of increased nuchal translucency with normal karyotype for prenatal diagnosis.

Clinical application of chromosomal microarray for pathogenic genomic imbalance in fetuses with increased nuchal translucency but normal karyotype

  • Lee, Dongsook;Go, Sanghee;Na, Sohyun;Park, Surim;Ma, Jinyoung;Hwang, Doyeong
    • Journal of Genetic Medicine
    • /
    • v.17 no.1
    • /
    • pp.21-26
    • /
    • 2020
  • Purpose: To evaluate the additive value of prenatal chromosomal microarray analysis (CMA) in assessing increased nuchal translucency (NT) (≥3.5 mm) with normal karyotype and the possibility of detecting clinically significant genomic imbalance, based on specific indications. Materials and Methods: Invasive samples from 494 pregnancies with NT ≥3.5 mm, obtained from the Research Center of Fertility & Genetics of Hamchoon Women's Clinic between January 2019 and February 2020, were included in this study and CMA was performed in addition to a standard karyotype. Results: In total, 494 cases were subjected to both karyotype and CMA analyses. Among these, 199 cases of aneuploidy were excluded. CMA was performed on the remaining 295 cases (59.7%), which showed normal (231/295, 78.3%) or non-significant copy number variation (CNV), such as benign CNV or variants of uncertain clinical significance likely benign (53/295, 18.0%). Clinically significant CNVs were detected in 11 cases (11/295, 3.7%). Conclusion: Prenatal CMA resulted in a 3% to 4% higher CNV diagnosis rate in fetuses exhibiting increased NT (≥3.5 mm) without other ultrasound detected anomalies and normal karyotype. Therefore, we suggest using high resolution, non- targeting CMA to provide valuable additional information for prenatal diagnosis. Further, we recommend that a genetics specialist should be consulted to interpret the information appropriately and provide counseling and follow-up services after prenatal CMA.

Clinical Applications of Chromosomal Microarray Analysis (염색체 Microarray 검사의 임상적 적용)

  • Seo, Eul-Ju
    • Journal of Genetic Medicine
    • /
    • v.7 no.2
    • /
    • pp.111-118
    • /
    • 2010
  • Chromosomal microarray analysis (CMA) enables the genome-wide detection of submicroscopic chromosomal imbalances with greater precision and accuracy. In most other countries, CMA is now a commonly used clinical diagnostic test, replacing conventional cytogenetics or targeted detection such as FISH or PCR-based methods. Recently, some consensus statements have proposed utilization of CMA as a first-line test in patients with multiple congenital anomalies not specific to a well-delineated genetic syndrome, developmental delay/intellectual disability, or autism spectrum disorders. CMA can be used as an adjunct to conventional cytogenetics to identify chromosomal abnormalities observed in G-banding analysis in constitutional or acquired cases, leading to a more accurate and comprehensive assessment of chromosomal aberrations. Although CMA has distinct advantages, there are several limitations, including its inability to detect balanced chromosomal rearrangements and low-level mosaicism, its interpretation of copy number variants of uncertain clinical significance, and significantly higher costs. For these reasons, CMA is not currently a replacement for conventional cytogenetics in prenatal diagnosis. In clinical applications of CMA, knowledge and experience based on genetics and cytogenetics are required for data analysis and interpretation, and appropriate follow-up with genetic counseling is recommended.

Challenges of Genome Wide Sequencing Technologies in Prenatal Medicine (산전 진단에서의 염기 서열 분석 방법의 의의)

  • Kang, Ji-Un
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.2
    • /
    • pp.762-769
    • /
    • 2022
  • Genetic testing in prenatal diagnosis is a precious tool providing valuable information in clinical management and parental decision-making. For the last year, cytogenetic testing methods, such as G-banding karyotype analysis, fluorescent in situ hybridization, chromosomal microarray, and gene panels have evolved to become part of routine laboratory testing. However, the limitations of each of these methods demonstrate the need for a revolutionary technology that can alleviate the need for multiple technologies. The recent introduction of new genomic technologies based on next-generation sequencing has changed the current practice of prenatal testing. The promise of these innovations lies in the fast and cost-effective generation of genome-scale sequence data with exquisite resolution and accuracy for prenatal diagnosis. Here, we review the current state of sequencing-based pediatric diagnostics, associated challenges, as well as future prospects.

A newborn with developmental delay diagnosed with 4q35 deletion and 10p duplication

  • Kim, Beom Joon;Jang, Woori;Kim, Myungshin;Youn, YoungAh
    • Journal of Genetic Medicine
    • /
    • v.17 no.2
    • /
    • pp.102-107
    • /
    • 2020
  • We report the case of an infant with a 4q35.1 deletion with 10p duplication. This mutation is rarely reported in the literature and has been found to have variable clinical findings, often including developmental delay. In this case, the condition was detected by chromosomal microarray analysis after initial manifestation of a feeding problem and developmental delay. Minor dysmorphic features with abnormal neurological examination led to further evaluation. The father's chromosome complement was 46, XY, t(4;10)(q35;p12.2). Parental balanced translocation can go unrecognized, because affected individuals are often phenotypically healthy until they have fertility issues such as recurrent miscarriages or children with severe congenital disorders. Genetic diagnoses help to establish a clear family genetic background that permits the development of clear treatment strategies. Prenatal counseling can also help to understand the possible risks associated with pregnancy or future child planning.