• Title/Summary/Keyword: Premixed flames

Search Result 356, Processing Time 0.022 seconds

A Study on the Structure of Premixed Turbulent Propagating Flames Using a Microprobe Method (정전탐침법에 의한 예혼합 난류전파화염의 구조에 관한 연구)

  • Kim, J.H.;Ahn, S.K.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.6
    • /
    • pp.78-86
    • /
    • 1995
  • The structure of premixed turbulent flames in a constant-volume vessel was investigated using a microprobe method. The flame potential signal having one to eight peaks was detected in the case of turbulent flames, each of them being regarded as a flamelet existing in the flame zone. Based on this consideration, the flame propagation speed, the thickness of the flame zone, the number of flamelets and the separation distance between adjacent flamelets in the flame zone were measured. The experimental resuits of this work suggest the existence of "reactant islands" behind the flame front when the turbulence was intensified to some extent. The critical(lowest) ratio of turbulence intensity to the laminar burning velocity being found to be about 0.7 for the formation of reactant islands in this experiment.

  • PDF

Characteristics of Methane Non-Premixed Multiple Jet Flames (메탄 비예혼합 상호작용 화염의 특성)

  • Kim Jin Hyun;Lee Byeong-Jun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.3 s.234
    • /
    • pp.349-355
    • /
    • 2005
  • It has been reported that propane non-premixed interacting flames are not extinguished even in 210m/s if eight small nozzles are arranged along the imaginary circle of 40 ~ 72 times the diameter of single nozzle. In this research, experiments were extended to the methane flame. Nine nozzles were used- eight was evenly located along the perimeter of the imaginary circle and one at the geometric center. The space between nozzles, s, the exit velocity and the role of the jet from the center nozzle were considered. On the contrary to the propane non-premixed flame, small amount of fuel fed through the center nozzle makes the methane diffusion flame stable even at the choking conditions. In the laminar region, the flame at the center nozzle anchored the outer lifted flames.

Experimental Study on Effects of Syngas Addition in Flame Propagation and Stability of DME-Air Premixed Flames (디메틸에테르-공기 예혼합화염의 화염전파와 화염안정성에 있어서 합성가스의 첨가효과에 관한 실험적 연구)

  • Song, Wonsik;Park, Jeong;Kwon, Ohboong;Yun, Jinhan;Kee, Sangin
    • Journal of the Korean Society of Combustion
    • /
    • v.17 no.4
    • /
    • pp.44-50
    • /
    • 2012
  • The present study was conducted to investigate the flame instability(evaluated by Markstein length and cellular instability) and laminar burning velocity in a constant volume combustion chamber at room temperature and elevated pressure up to 0.3 MPa to suggest the possibility of utilizing mixtures of syngas added DME-air premixed flames in internal combustion engines. The experimentally measured laminar burning velocities were compared to predictions calculated the PREMIX code with Zhao reaction mechanism. Discussions were made on effects of syngas addition into DME-Air premixed flames through evaluating laminar burning velocity, Markstein length, and cellular instability. Particular concerns are focused on cellular instability caused by hydrodynamic instability and diffusive-thermal instability.

Investigation of liftoff mechanisms in hydrogen turbulent non-premixed jet flames (수소 난류확산화염에서의 부상 메커니즘에 대한 연구)

  • Oh, Jeong-Seog;Kim, Mun-Ki;Choi, Yeong-Il;Yoon, Young-Bin
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2006.12a
    • /
    • pp.135-140
    • /
    • 2006
  • The stabilization mechanism of turbulent, lifted jet flames in a non-premixed condition has been studied experimentally. The objectives are to explain the phenomenon of a liftoff height decreasing as increasing fuel velocity and to reveal the mechanisms of flame stability Hydrogen was varied from 100 to 300 m/s and a coaxial air was fixed at 16 m/s with a coflow air less than 0.1 m/s. The technique of PIV and OH PLIF was used simultaneously with CCD and ICCD cameras. It was found that the liftoff height of the jet decreased with an increased fuel jet exit velocity. The leading edge at the flame base was moving along the stoichiometric line. Finally we confirmed that the stabilization of lifted hydrogen diffusion flames is related with a turbulent intensity, which means combustion is occurred where the local flow velocity is equal to the turbulent flame propagation velocity.

  • PDF

Non-premixed Hydrogen Flame Structure in Supersonic Coflowing Air Flows

  • Kim, Ji-Ho;Kim, Je-Hung;Yoon, Young-Bin;Park, Chul-Woung;Hahn, Jae-Won
    • Journal of the Korean Society of Combustion
    • /
    • v.7 no.1
    • /
    • pp.1-7
    • /
    • 2002
  • Experiments have been performed to investigate the structure of axisymmetric hydrogen diffusion flame in a supersonic coflow air. The characteristics and structure of supersonic flames are compared with those of subsonic flames as the velocity of coflow air increases from subsonic to supersonic velocity of Mach 1.8. Also, the subsonic and supersonic flow fields are analyzed numerically for the non-reacting conditions and the possible flame contours indicated by fuel mass fraction are compared with the measured OH radical distributions. It is found that the flame structure indicates more like a partially premixed flame as the coflow air velocity is increased from subsonic to supersonic regimes; strong reaction zone indicated by intense OH signal is found at the center, which is different from subsonic flame cases. And it is shown that the fuel jet passes along the recirculation zones behind the bluff-body fuel nozzle resulting in relatively long mixing time. This is believed to be the reason of the partially premixed flame characteristics found in the present supersonic flames.

  • PDF

A Study of NO Formation Characteristics in Laminar Flames Using 2-D LIF Technique (2-D LIF를 이용한 층류화염의 NO 생성특성에 관한 연구)

  • Lee, Won-Nam;Cha, Min-Suk;Song, Young-Hoon
    • Journal of the Korean Society of Combustion
    • /
    • v.8 no.3
    • /
    • pp.38-48
    • /
    • 2003
  • OH, CH and NO radical distributions have been measured and compared with the numerical analysis results in methane/air partially premixed laminar flames using 2-D LIF technique. The pick intensity of OH LIF signal is insensitive to fuel equivalence ratio: however, CH LIF intensity decreases as equivalence ratio increases and the NO concentration increases with equivalence ratio. The contribution of the prompt NO, formed near premixed reaction zone, to the total NO formation is evident from the OH, CH, and NO PLIF images in which the dilution effect of nitrogen is minimal for the highest equivalence ratio. Measured OH and NO LIF signals in counterflow flames agree with the computed concentration distributions. Both numerical and experimental results indicate that the structural change in a flame alters the NO formation characteristics of a partially premixed counterflow flame. The nitrogen dilution also changes flame structure, temperature and OH radical distributions and results in the decreased NO concentrations in a flame. The levels of decrease in NO concentrations, however, depends on the premixedness(${\alpha}$) of a flame. The larger change in the flame structure and NO concentrations have been observed in a premixed flame(${\alpha}=1.0$), which implies that the premixedness is likely to be a factor in the dilution effect on NO formation of a flame.

  • PDF

Comparison of Dynamic Characteristics of Methane/Air and Propane/Air Premixed Flames with Ultrasonic Standing Wave (정상초음파가 개재하는 메탄/공기 및 프로판/공기 예혼합화염의 동역학적 특성 비교)

  • Kim, Min Cheol;Bae, Dae Seok;Kim, Jeong Soo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.21 no.4
    • /
    • pp.44-51
    • /
    • 2017
  • An experimental results on the dynamic characteristics of hydrocarbon/air premixed flames with ultrasonic standing waves are presented and compared. Images of the propagating flames were acquired by using a high-speed camera, and the flame behavior of methane/air and propane/air premixed flame were closely scrutinized through the image post-processing. At the fuel-lean conditions, the flame propagation velocity increased due to the intervention of the ultrasonic standing wave and vice versa at the fuel-rich conditions.

Research on Turbulent Premixed Flame with Simultaneous PIV/OH PLIF measurements (PIV/OH PLIF 동시측정을 이용한 난류 예혼합 화염 연구)

  • Cho Yong-jin;Kim Ji-ho;Cho Tae-young;Yoon Young-bin
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2002.11a
    • /
    • pp.97-99
    • /
    • 2002
  • Turbulent premixed flames were a subject of many researches for a number of decades. Especially, Borghi suggested a manificent diagram classifying turbulent combustion reasions and Lipatnikov and Chomiak modified this diagram. But this diagram has difficulties tn defining a flame thickness and velocity and measuring integral length scales In addition, recently experimental techniques are being developed, so we can accurately use PIV diagnostics measuring 2D velocity field instead of LDV and make good use of PLIF techniques for obtaining the flame information. In this study, according to developing techniques, suggest a new diagram replacing the existing Borghi diagram. Simultaneous PIV/OH PLIF measurements are used, which measure a shear strain rate and a location of flames, respectively. The shear strain rate represents turbulence and the OH signal indicates the flame information, but there is no geometric Information which is very important to flame quenching. Hence, to consider the geometric information, calculate fractal dimensions of the OH images. So the diagram suggested in this research has three axes which consist of strain rate, OH signal, and fractal dimension and can classify turbulent premixed flames.

  • PDF

Effects of Acoustic Excitation on NOx Emission in Partially Premixed LPG/Air Flames (부분적 예혼합 LPG/공기 화염에서 음향자진이 NOx 배출에 미치는 영향)

  • 장준영;박성호;김태권
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.3
    • /
    • pp.77-84
    • /
    • 2002
  • Measurements of NO and NOx emission of laminar partially premixed LPG/air flames with and without acoustic excitation are reported. The NOx emission at the tailpipe of a combustion chamber is determined by chemiluminescent analyser. The NOx measurements are taken in flames with several different center tube equivalance ratio( ø$\sub$o/), and overall equivalace ratio(ø$\sub$o/) for a fixed fuel flowrate. The NOx emission decrease to reach a minimum value at an optimum ø$\sub$c/ 2. Theø$\sub$c/ 2 flame gives a compromise of thermal NO and prompt NO mechanism. In the case of excitation. the visual shape of the flame is changed from laminar flame to turbulent-like flame. With increasing levels of excitation amplitude, an optimum value of the NO and NOx emission exists. A shorter flame caused by the enhanced upstream mixing due to acoustic excitation results in the reduction of NO and NOx emission in the present flames. The reduction of flame length affects the shorter residence time of center tube mixture, and significantly influences the NOx reduction.

Liftoff Mechanisms in Hydrogen Turbulent Non-premixed Jet Flames (수소 난류확산화염에서의 부상 메커니즘에 대한 연구)

  • Oh, Jeong-Seog;Kim, Mun-Ki;Choi, Yeong-Il;Yoon, Young-Bin
    • Journal of the Korean Society of Combustion
    • /
    • v.12 no.2
    • /
    • pp.26-33
    • /
    • 2007
  • To reveal the newly found liftoff height behavior of hydrogen jet, we have experimentally studied the stabilization mechanism of turbulent, lifted jet flames in a non-premixed condition. The objectives of the present research are to report the phenomenon of a liftoff height decreasing as increasing fuel velocity, to analyse the flame structure and behavior of the lifted jet, and to explain the mechanisms of flame stability in hydrogen turbulent non-premixed jet flames. The velocity of hydrogen was varied from 100 to 300m/s and a coaxial air velocity was fixed at 16m/s with a coflow air less than 0.1m/s. For the simultaneous measurement of velocity field and reaction zone, PIV and OH PLIF technique was used with two Nd:Yag lasers and CCD cameras. As results, it has been found that the stabilization of lifted hydrogen diffusion flames is related with a turbulent intensity, which means that combustion occurs at the point where the local flow velocity is balanced with the turbulent flame propagation velocity.

  • PDF