• Title/Summary/Keyword: Premixed Gas

Search Result 381, Processing Time 0.022 seconds

Combustion Instability Mechanism of a Lean Premixed Gas Turbine Combustor

  • Seo, Seonghyeon
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.6
    • /
    • pp.906-913
    • /
    • 2003
  • Lean premixed combustion has been considered as one of the promising solutions for the reduction of NOx emissions from gas turbines. However, unstable combustion of lean premixed flow becomes a real challenge on the way to design a reliable, highly efficient dry low NOx gas turbine combustor. Contrary to a conventional diffusion type combustion system, characteristics of premixed combustion significantly depend on a premixing degree of combusting flow. Combustion behavior in terms of stability has been studied in a model gas turbine combustor burning natural gas and air. Incompleteness of premixing is identified as significant perturbation source for inducing unstable combustion. Application of a simple convection time lag theory can only predict instability modes but cannot determine whether instability occurs or not. Low frequency perturbations are observed at the onset of instability and believed to initiate the coupling between heat release rate and pressure fluctuations.

Exhaust and Combustion Characteristics of Premixed Swirl Burner for Steam Reforming System (선회류 예혼합버너를 적용한 개질기용 연소시스템의 배기 및 연소특성)

  • Cha, Chun Loon;Hwang, Sang Soon
    • Journal of the Korean Society of Combustion
    • /
    • v.19 no.3
    • /
    • pp.34-43
    • /
    • 2014
  • The reformer system is a method for hydrogen production from hydrocarbon fuels such as natural gas under high temperature environment($about{\sim}1,000^{\circ}C$). The premixed swirl burner with mixing swirler and combustion swirler designed to deliver fuel cell electric output from 0.5 kW to 1.5 kW. Premixed swirl burner experiments using natural gas and mixture of natural gas and anode off gas were carried out to analyse flame patterns and stability by equivalence ratio respectively. The results show that the stable swirl flame can be established for all cases of fuels type using the premixed swirl burner. The swirl flame had a wide stability region and it showed very low CO(50 ppm) and $NO_x$(20 ppm) emission at different fuel type and various equivalence ratio conditions. The operating range of premixed swirl burner for stable swirl flame is found to exist between equivalence ratio of 0.70 to 0.90 for turn down ratio of 3:1.

Combustion Characteristics of Premixed Charge Compression Ignition Diesel Engine with EGR System (EGR율에 따른 예혼합 압축 착화 디젤 엔진의 연소 특성)

  • 이창식;이기형;김대식;허성근
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.2
    • /
    • pp.66-72
    • /
    • 2002
  • A premixed charge compression ignition engine is experimentally investigated for the reduction of NOx and smoke emissions from diesel engines. In this study, the premixed fuel is injected into the intake manifold to form homogeneous pre-mixture in the combustion chamber and then this pre-mixture is ignited by small amount of diesel fuel directly injected into the cylinder. In the premixed charge compression ignition engine, NOx and smoke concentrations of the exhaust emissions were reduced simultaneously as compared with the conventional diesel engine. But HC emission was increased with the increase of premixed ratio. Also, when EGR system was applied to the PCCI diesel engine, the effect of EGR rate on the combustion characteristics and the exhaust gas emissions was discussed.

A Study on Optimization of Diesel Combustion in condition of Premixed Natural gas (천연가스 예혼합 분위기 내 디젤 연소의 최적화에 관한 연구)

  • Suh, Hyunuk;Jeon, Chunghwan
    • 한국연소학회:학술대회논문집
    • /
    • 2014.11a
    • /
    • pp.141-142
    • /
    • 2014
  • This numerical study was carried out to optimize dual fuel combustion on natural gas-diesel in static chamber. Spray experiments conducted under conditions of premixed methan 0%, 5% and 10%. In the results, penetration decreases when premixed methane is increasing. Constants of numerical models were acquired from results of spray experiments to enhance accuracy of numerical study. And dual fuel engine simulation was implemented by using AVL-FIRE with acquired constants.

  • PDF

Flame Transfer Function Modeling in a Gas Turbine Partially-premixed Combustor with Equivalence Ratio Modulation (가스터빈 부분 예혼합 연소기에서 당량비 섭동에 대한 화염전달함수 모델링)

  • Kim, Jihwan;Kim, Daesik
    • Journal of ILASS-Korea
    • /
    • v.22 no.2
    • /
    • pp.55-61
    • /
    • 2017
  • This study has investigated the relationship between heat release fluctuations and the flow perturbations in a partially premixed gas turbine combustor using a commercial CFD code. Special focus of the current work is placed on the effect of equivalence ratio on the flame dynamics in a partially-premixed system. As the first step for this combustion dynamics study in the non-perfectly premixed combustor, flame behaviors are modeled and then compared with measured results under both steady and unsteady conditions. The calculated results of the flame transfer function with equivalence ratio fluctuation are found to well capture the main qualitative characteristics of the combustion dynamics for the partially-premixed flames.

Studies on Combustion Characteristics and Reduced Kinetic Mechanisms of Natural Gas Premixed Flames (천연가스 예혼합화염의 연소특성 및 축소반응메커니즘에 관한 연구)

  • 이수룡;김홍집;정석호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.4
    • /
    • pp.166-177
    • /
    • 1998
  • Combustion characteristics of natural gas premixed flames is studied experimently and numerically by adopting a counterflow as a flamelet model in turbulent flames. Flame speeds are measured by employing LDV, and the results show that flame speed increases linearly with strain rate, which agrees well with numerical results. Parametric dependences of extinction strain rates are studied numerically with detailed kinetic mechanism to show that the addition of ethand to a methane premixed flame makes the flame more resistant to strain rate. The effect of pressure on the extinction strain rate is that the extinction strain rate increases up to 10 atm and them decreases, which is explained by competition of chain branching H+O2=OH+O and recombination reaction H+O2+M=HO2+M. Detailed mechanism having seventy-four step is systematically reduced to a nine-step and a five-step thermal NOx chemistry is reduced to two-step. Comparison between the results of the detailed and the reduced mechanisms demonstrates that the reduced mechanism successfully describes the essential features of natural gas premixed flames including extinction strain rate and NOx production.

  • PDF

The Study for Designs of Lean-Premixed low NOx Combustor (희박-예혼합 저 NOx 연소기 설계에 대한 연구)

  • Lim, Am-Ho;Kim, Han-Suck;Ann, Kuk-Young;Lee, Sang-Min;Kim, Yong-Mo
    • 한국연소학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.83-88
    • /
    • 2003
  • The concept of lean-premixed combustion in gas turbine combustor operation has become a standard in recent years as an effective means to meet stringent environmental standards on NOx emissions. Various types of air-fuel premixer, which affect greatly NOx emission and stability of lean-premixed low NOx combustor, were investigated experimentally to reduce the NOx emission. One type of the premixers is selected by experiments and applied it to 70kW class lean-premixed gas turbine combustor. The exit temperature and emissions of CO and NOx were measured with equivalence ratios at ambient pressure. From the results, the emissions of CO and NOx were influenced by the type of air-fuel premixer. As the mixing length of air and fuel is longer, the NOx and CO emission were decreased in the primary reaction zone. Compared with of conventional combustor, the lean-premixed low NOx combustor has low NOx emission characteristics.

  • PDF

Fuel Dilution Effects for Stratified Premixed Flames (성층화된 예혼합화염에 대한 희석제 첨가의 영향)

  • Ahn, Taekook;Lee, Wonnam
    • 한국연소학회:학술대회논문집
    • /
    • 2013.06a
    • /
    • pp.73-76
    • /
    • 2013
  • The inert gas dilution effect for the stability of a stratified propane premixed flame has been experimentally studied. The addition of inert gases to a stratified premixed flame, which used to be very stable without dilution, makes a flame unstable. The lower equivalence ratio on the outer premixed flame and the lower fuel flow rate through the inner nozzle were observed to be the more stable conditions for the stratified premixed flame with nitrogen or argon dilution. It has been interpreted with the flame structure change such as shift of stoichiometric ratio region in a flame.

  • PDF

3D RANS Simulation and the Prediction by CRN Regarding NOx in a Lean Premixed Combustion in a Gas Turbine Combustor (희박 예혼합 가스터빈 연소기 3 차원 전산 해석 및 화학반응기 네트워크에 의한 NOx 예측)

  • Yi, Jae-Bok;Jeong, Dae-Ro;Huh, Kang-Yul;Jin, Jae-Min;Park, Jung-Kyu;Lee, Min-Chul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.12
    • /
    • pp.1257-1264
    • /
    • 2011
  • This paper presents 3D simulation by STAR-CCM+ for lean premixed combustion in a stationary gas turbine combustor with separate pilot and main nozzles. The constant for the source term in the flame area density transport equation was modified to account for a low global equivalence ratio and validated against measurement data. A Partially-premixed Coherent Flame Model(PCFM) involves propagation of a laminar premixed flame with the predicted flame surface density and equilibrium assumption in the burned gas with spatial inhomogeneity. The conditions for cooling by radiation and convection are considered for accurate determination of the heat flux on the wall. A parametric study is of the pilot-fuel-to-total-fuel-ratio is carried out. A chemical reactor network (CRN) was constructed on the basis of the 3D simulation results and compared against measurements of NOx.

Effects of Fuel-Air Unmixedness on Lean Premixed Combustion Characteristics (연료-공기 비혼합도가 희박예혼합 연소 특성에 미치는 영향)

  • Kim, Dae-Hyun;Lee, Jong-Ho;Jeon, Chung-Hwan;Chang, Young-June
    • 한국연소학회:학술대회논문집
    • /
    • 2002.06a
    • /
    • pp.133-139
    • /
    • 2002
  • The lean premixed technique has been proven very efficient in reducing NOx emissions from gas turbine combustors. However combustion instability is susceptible to occur in lean premixed combustor. So laboratory-scale dump combustor was used to understanding the underlying mechanisms causing combustion instabilities. In this study, tests were conducted at atmospheric pressure and inlet air was up to $360^{\circ}C$ with natural gas. The observed instability was a longitudinal mode with a frequency of ${\sim}341.8Hz$. At selected unstable conditions, phase-resolved OH chemiluminescence images were captured to investigate flame structure with various equivalence ratio. Combustion instability was observed to occur at higher value of equivalence ratio(>0.69). This study was performed to investigate the effects of equivalence ratio and fuel split measuring NOx and acoustic wave. The results reveal the effect of fuel-air unmixedness on lean premixed combustor.

  • PDF