The structure of premixed turbulent flames in a constant-volume vessel was investigated using a microprobe method. The flame potential signal having one to eight peaks was detected in the case of turbulent flames, each of them being regarded as a flamelet existing in the flame zone. Based on this consideration, the flame propagation speed, the thickness of the flame zone, the number of flamelets and the separation distance between adjacent flamelets in the flame zone were measured. The experimental resuits of this work suggest the existence of "reactant islands" behind the flame front when the turbulence was intensified to some extent. The critical(lowest) ratio of turbulence intensity to the laminar burning velocity being found to be about 0.7 for the formation of reactant islands in this experiment.
It has been reported that propane non-premixed interacting flames are not extinguished even in 210m/s if eight small nozzles are arranged along the imaginary circle of 40 ~ 72 times the diameter of single nozzle. In this research, experiments were extended to the methane flame. Nine nozzles were used- eight was evenly located along the perimeter of the imaginary circle and one at the geometric center. The space between nozzles, s, the exit velocity and the role of the jet from the center nozzle were considered. On the contrary to the propane non-premixed flame, small amount of fuel fed through the center nozzle makes the methane diffusion flame stable even at the choking conditions. In the laminar region, the flame at the center nozzle anchored the outer lifted flames.
The present study was conducted to investigate the flame instability(evaluated by Markstein length and cellular instability) and laminar burning velocity in a constant volume combustion chamber at room temperature and elevated pressure up to 0.3 MPa to suggest the possibility of utilizing mixtures of syngas added DME-air premixed flames in internal combustion engines. The experimentally measured laminar burning velocities were compared to predictions calculated the PREMIX code with Zhao reaction mechanism. Discussions were made on effects of syngas addition into DME-Air premixed flames through evaluating laminar burning velocity, Markstein length, and cellular instability. Particular concerns are focused on cellular instability caused by hydrodynamic instability and diffusive-thermal instability.
The stabilization mechanism of turbulent, lifted jet flames in a non-premixed condition has been studied experimentally. The objectives are to explain the phenomenon of a liftoff height decreasing as increasing fuel velocity and to reveal the mechanisms of flame stability Hydrogen was varied from 100 to 300 m/s and a coaxial air was fixed at 16 m/s with a coflow air less than 0.1 m/s. The technique of PIV and OH PLIF was used simultaneously with CCD and ICCD cameras. It was found that the liftoff height of the jet decreased with an increased fuel jet exit velocity. The leading edge at the flame base was moving along the stoichiometric line. Finally we confirmed that the stabilization of lifted hydrogen diffusion flames is related with a turbulent intensity, which means combustion is occurred where the local flow velocity is equal to the turbulent flame propagation velocity.
Kim, Ji-Ho;Kim, Je-Hung;Yoon, Young-Bin;Park, Chul-Woung;Hahn, Jae-Won
한국연소학회지
/
제7권1호
/
pp.1-7
/
2002
Experiments have been performed to investigate the structure of axisymmetric hydrogen diffusion flame in a supersonic coflow air. The characteristics and structure of supersonic flames are compared with those of subsonic flames as the velocity of coflow air increases from subsonic to supersonic velocity of Mach 1.8. Also, the subsonic and supersonic flow fields are analyzed numerically for the non-reacting conditions and the possible flame contours indicated by fuel mass fraction are compared with the measured OH radical distributions. It is found that the flame structure indicates more like a partially premixed flame as the coflow air velocity is increased from subsonic to supersonic regimes; strong reaction zone indicated by intense OH signal is found at the center, which is different from subsonic flame cases. And it is shown that the fuel jet passes along the recirculation zones behind the bluff-body fuel nozzle resulting in relatively long mixing time. This is believed to be the reason of the partially premixed flame characteristics found in the present supersonic flames.
OH, CH and NO radical distributions have been measured and compared with the numerical analysis results in methane/air partially premixed laminar flames using 2-D LIF technique. The pick intensity of OH LIF signal is insensitive to fuel equivalence ratio: however, CH LIF intensity decreases as equivalence ratio increases and the NO concentration increases with equivalence ratio. The contribution of the prompt NO, formed near premixed reaction zone, to the total NO formation is evident from the OH, CH, and NO PLIF images in which the dilution effect of nitrogen is minimal for the highest equivalence ratio. Measured OH and NO LIF signals in counterflow flames agree with the computed concentration distributions. Both numerical and experimental results indicate that the structural change in a flame alters the NO formation characteristics of a partially premixed counterflow flame. The nitrogen dilution also changes flame structure, temperature and OH radical distributions and results in the decreased NO concentrations in a flame. The levels of decrease in NO concentrations, however, depends on the premixedness(${\alpha}$) of a flame. The larger change in the flame structure and NO concentrations have been observed in a premixed flame(${\alpha}=1.0$), which implies that the premixedness is likely to be a factor in the dilution effect on NO formation of a flame.
정상초음파가 개재하는 탄화수소계 연료공기 예혼합화염의 동역학적 특성 비교에 대한 실험적 연구결과를 제시한다. 전파화염의 이미지는 고속카메라를 이용하여 획득하였으며, 이미지 후처리를 통해 메탄/공기와 프로판/공기 예혼합화염의 화염거동을 상세히 관찰하였다. 이론당량비 이하의 연료희박조건에서 정상초음파 개재에 의한 연소반응 촉진으로 인해 화염전파속도는 증가되었다. 한편, 당량비가 1.2인 메탄/공기 화염과 당량비 1.4 이상의 프로판/공기 화염의 전파속도에 대한 초음파의 영향은 연료희박조건과 반대되는 결과를 보였다.
Turbulent premixed flames were a subject of many researches for a number of decades. Especially, Borghi suggested a manificent diagram classifying turbulent combustion reasions and Lipatnikov and Chomiak modified this diagram. But this diagram has difficulties tn defining a flame thickness and velocity and measuring integral length scales In addition, recently experimental techniques are being developed, so we can accurately use PIV diagnostics measuring 2D velocity field instead of LDV and make good use of PLIF techniques for obtaining the flame information. In this study, according to developing techniques, suggest a new diagram replacing the existing Borghi diagram. Simultaneous PIV/OH PLIF measurements are used, which measure a shear strain rate and a location of flames, respectively. The shear strain rate represents turbulence and the OH signal indicates the flame information, but there is no geometric Information which is very important to flame quenching. Hence, to consider the geometric information, calculate fractal dimensions of the OH images. So the diagram suggested in this research has three axes which consist of strain rate, OH signal, and fractal dimension and can classify turbulent premixed flames.
Measurements of NO and NOx emission of laminar partially premixed LPG/air flames with and without acoustic excitation are reported. The NOx emission at the tailpipe of a combustion chamber is determined by chemiluminescent analyser. The NOx measurements are taken in flames with several different center tube equivalance ratio( ø$\sub$o/), and overall equivalace ratio(ø$\sub$o/) for a fixed fuel flowrate. The NOx emission decrease to reach a minimum value at an optimum ø$\sub$c/ 2. Theø$\sub$c/ 2 flame gives a compromise of thermal NO and prompt NO mechanism. In the case of excitation. the visual shape of the flame is changed from laminar flame to turbulent-like flame. With increasing levels of excitation amplitude, an optimum value of the NO and NOx emission exists. A shorter flame caused by the enhanced upstream mixing due to acoustic excitation results in the reduction of NO and NOx emission in the present flames. The reduction of flame length affects the shorter residence time of center tube mixture, and significantly influences the NOx reduction.
To reveal the newly found liftoff height behavior of hydrogen jet, we have experimentally studied the stabilization mechanism of turbulent, lifted jet flames in a non-premixed condition. The objectives of the present research are to report the phenomenon of a liftoff height decreasing as increasing fuel velocity, to analyse the flame structure and behavior of the lifted jet, and to explain the mechanisms of flame stability in hydrogen turbulent non-premixed jet flames. The velocity of hydrogen was varied from 100 to 300m/s and a coaxial air velocity was fixed at 16m/s with a coflow air less than 0.1m/s. For the simultaneous measurement of velocity field and reaction zone, PIV and OH PLIF technique was used with two Nd:Yag lasers and CCD cameras. As results, it has been found that the stabilization of lifted hydrogen diffusion flames is related with a turbulent intensity, which means that combustion occurs at the point where the local flow velocity is balanced with the turbulent flame propagation velocity.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.