• Title/Summary/Keyword: Preload Torque

Search Result 47, Processing Time 0.024 seconds

Analysis of Three-Pad Gas Foil Journal Bearing for Increasing Mechanical Preloads (3 패드 가스 포일 저널 베어링의 프리로드 증가에 따른 성능 해석)

  • Lee, Jong Sung;Kim, Tae Ho
    • Tribology and Lubricants
    • /
    • v.30 no.1
    • /
    • pp.1-8
    • /
    • 2014
  • In this study, a three-pad gas foil journal bearing with a diameter of 40 mm and an axial length of 35 mm was modeled to predict the static and dynamic performances with regard to an increasing mechanical preload. The Reynolds equation for an isothermal and isoviscous ideal gas was coupled with a simple elastic foundation foil model to calculate the hydrodynamic pressure solution iteratively. In the prediction results, the journal eccentricity, journal attitude angle, and minimum film thickness decreased, but the friction torque increased with the preload. A quick comparison implied a lower load capacity but higher stability for a three-pad gas foil bearing compared to a one-pad gas foil journal bearing. The direct stiffness coefficients increased with the preload, but the cross-coupled stiffness coefficients decreased. The direct damping coefficient increased in the horizontal direction but decreased in the vertical direction as the preload increased. These model predictions will be useful as a benchmark against experimental test data.

The effect of bolt tightening methods and sequence on the performance of gasketed bolted flange joint assembly

  • Abid, Muhammad;Khan, Yasir Mehmood
    • Structural Engineering and Mechanics
    • /
    • v.46 no.6
    • /
    • pp.843-852
    • /
    • 2013
  • This paper presents results of the effect of different bolt tightening sequences and methods on the performance of gasketed bolted flange joint using nonlinear finite element analysis. Bolt preload scatter due to elastic interactions, flange stress variation and bolt bending due to flange rotation and gasket contact stress variation is difficult to eliminate in torque control method i.e. tightening one bolt at a time. Although stretch control method (tightening more than one bolt at time) eradicates the bolt preload scatter, flange stress variation is relatively high. Flange joint's performance is compared to establish relative merits and demerits of both the methods and different bolt tightening sequences.

THE INFLUENCE OF ABUTMENT SCREW LENGTH AND REPEATED TIGHTENING ON SCREW LOOSENING IN DENIAL IMPLANT (치과용 임플랜트에서 지대주 나사의 길이 및 반복 조임 횟수가 지대주 나사의 풀림에 미치는 영향)

  • Choi Jin-Ho;Yang Jae-Ho;Cho Won-Pyo;Lee Jai-Bong
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.44 no.4
    • /
    • pp.432-442
    • /
    • 2006
  • Statement of problem: One of common problems associated with dental implant is the loosening of abutment screws that retain the implants. Purpose : This study was performed to investigate the influence of abutment screw length and repeated tightening on screw loosening in dental implant. Material and method: Forty nine Hexplants (13mm length, 4.3mm diameter, Ti grade IV, Warantec. Co. Ltd. Seongnam, Korea) and cementation type abutments(straight abutment) and abutment screws (0.4mm/pitch) were divided into 7 groups, depending on abutment screw length. Each implant and abutment was tightened to 30Ncm by torque controller(MGT50, MARK-10 Inc., USA) and the removal torque values were measured during 10 consecutive closure/opening trials. Results and Conclusion: The results of comparing the removal torque value are as follows : 1. There is no significant difference in the removal torque value between groups in 10 consecutive closure/opening trials (p = 0.97). 2. If the fractured abutment screw is engaged in longer than 2.425 thread length, there is no significant difference in the preload between the fractured abutment screw and the new abutment screw when both are equally tightened to 30 Ncm. 3. The removal torque value in the 1st trial(24.510 Ncm) was lower than that in the 2nd, 3rd, 4th, 5th, 6th, 7th trials and the removal torque value in the 2nd trials(25.551 Ncm) was maximum and was decreased in 1311owing trials. The removal torque value in the 1st trial was significantly lower than that in the 2nd, 3rd, 4th trials and was significantly higher than that in the 8th, 9th, l0th trials(p<0.05). 4. In the 2nd, 3rd, 4th, 5th, 6th, 7th trials, the abutment screw was mainly influenced by settling effect and the higher preload was obtained In the 8th, 9th, l0th trials, the abutment screw was mainly influenced by adhesive wear and the progressively lower preload was obtained.

Effect of Tightening Torque on Abutment-Fixture Joint Stability using 3-Dimensional Finite Element Analysis (임플란트 지대주나사의 조임회전력이 연결부 안정성에 미치는 영향에 관한 3차원 유한요소해석 연구)

  • Eom, Tae-Gwan;Suh, Seung-Woo;Jeon, Gyeo-Rok;Shin, Jung-Wook;Jeong, Chang-Mo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.47 no.2
    • /
    • pp.125-135
    • /
    • 2009
  • Statement of problem: Loosening or fracture of the abutment screw is one of the common problems related to the dental implant. Generally, in order to make the screw joint stable, the preload generated by tightening torque needs to be increased within the elastic limit of the screw. However, additional tensile forces can produce the plastic deformation of abutment screw when functional loads are superimposed on preload stresses, and they can elicit loosening or fracture of the abutment screw. Therefore, it is necessary to find the optimum tightening torque that maximizes a fatigue life and simultaneously offer a reasonable degree of protection against loosening. Purpose: The purpose of this study was to present the influence of tightening torque on the implant-abutment screw joint stability with the 3 dimensional finite element analysis. Material and methods: In this study, the finite element model of the implant system with external butt joint connection was designed and verified by comparison with additional theoretical and experimental results. Four different amount of tightening torques(10, 20, 30 and 40 Ncm) and the external loading(250 N, $30^{\circ}$) were applied to the model, and the equivalent stress distributions and the gap distances were calculated according to each tightening torque and the result was analyzed. Results: Within the limitation of this study, the following results were drawn; 1) There was the proportional relation between the tightening torque and the preload. 2) In case of applying only the tightening torque, the maximum stress was found at the screw neck. 3) The maximum stress was also shown at the screw neck under the external loading condition. However in case of applying 10 Ncm tightening torque, it was found at the undersurface of the screw head. 4) The joint opening was observed under the external loading in case of applying 10 Ncm and 20 Ncm of tightening torque. 5) When the tightening torque was applied at 40 Ncm, under the external loading the maximum stress exceeded the allowable stress value of the titanium alloy. Conclusion: Implant abutment screw must have a proper tightening torque that will be able to maintain joint stability of fixture and abutment.

THE EFFECTS OF FABRICATION OF GOLD CYLINDER AND ABUTMENT ON THE FITNESS AND PRELOAD OF THE PROSTHESIS (지대주와 금속 실린더의 종류가 보철물의 적합도 및 preload에 미치는 영향)

  • Ha Jum-Im;Jeong Hoe-Yeol;Kim Yu-Lee;Cho Hye-Won
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.41 no.4
    • /
    • pp.451-465
    • /
    • 2003
  • Statement of problem : Recently various implant components such as premachined gold cylinder, plastic cylinder gold UCLA abutment and plastic abutment were developed and used clinically without clinical investigation. Purpose : The purpose of this study was to evaluate the effects of fabrication of gold cylinder on the fitness and preload of the standard abutment and also the effects of fabrication of UCLA gold abutment on the fitness and stress transfer around the implant fixture. Material and method : Three kinds of gold cylinders such as, as-received gold cylinder (Nobel Biocare, Sweden), gold cylinder after casting, and plastic cylinder after casting with type IV gold alloy were tested over the top of the standard abutment. At the same time, three types of abutments such as, gold UCLA abutment before and after casting, and plastic abutment after casting were tested. The cylinder and abutment was secured over the fixture with conventional pre-load values using an electronic torque controller (Nobel Biocare, Sweden). The fitness of the abutment on the fixture and gold cylinder over the standard abutment were measured using the microhardness tester (MXT 70, Matsuzawa, Japan). Preload and the strain values were recorded using the strain balance unit (SB-10, Measurement group, Raleigh, USA) and strain indicator (P-3500, Measurement group, Raleigh, USA) systems. Results and conclusion : 1. Significant differences were found in the fit between the gold cylinder and plastic cylinder. 2 There were significant differences between the preload of the gold cylinder and that of the plastic cylinder. 3. Significant differences were found in the fit between the gold UCLA abutment and plastic UCLA abutment. 4. There were no significant differences in the stress generated on the supporting structure of the fixture among different cylinder and abutment groups.

A Study on the Design Technique to Reduce the Rattle Vibration (래틀 진동을 위한 설계 기법 연구)

  • 안병민;장일도;홍동표;정태진
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.562-566
    • /
    • 1997
  • The main torsional vibration source of the driveline is the fluctuation of the engine torque. The gear rattle is impacts generating in the backlash of the free gear due to this torsional vibration Optimization of the clutch torsional characteristic is one of the effective methods to reduce the idle gear rattle. Many researches have been reported on this problem but only few of them give sufficient consideration to the full clutch design parameters(stiffness, hysteresis torque, preload, first stage length) and drag torque This paper pays attention to the gear impact mechanism, clutch design parameters and drag torque to reduce the idle gear rattle with computer simulation.

  • PDF

Influence of abutment materials on the implant-abutment joint stability in internal conical connection type implant systems

  • Jo, Jae-Young;Yang, Dong-Seok;Huh, Jung-Bo;Heo, Jae-Chan;Yun, Mi-Jung;Jeong, Chang-Mo
    • The Journal of Advanced Prosthodontics
    • /
    • v.6 no.6
    • /
    • pp.491-497
    • /
    • 2014
  • PURPOSE. This study evaluated the influence of abutment materials on the stability of the implant-abutment joint in internal conical connection type implant systems. MATERIALS AND METHODS. Internal conical connection type implants, cement-retained abutments, and tungsten carbide-coated abutment screws were used. The abutments were fabricated with commercially pure grade 3 titanium (group T3), commercially pure grade 4 titanium (group T4), or Ti-6Al-4V (group TA) (n=5, each). In order to assess the amount of settlement after abutment fixation, a 30-Ncm tightening torque was applied, then the change in length before and after tightening the abutment screw was measured, and the preload exerted was recorded. The compressive bending strength was measured under the ISO14801 conditions. In order to determine whether there were significant changes in settlement, preload, and compressive bending strength before and after abutment fixation depending on abutment materials, one-way ANOVA and Tukey's HSD post-hoc test was performed. RESULTS. Group TA exhibited the smallest mean change in the combined length of the implant and abutment before and after fixation, and no difference was observed between groups T3 and T4 (P>.05). Group TA exhibited the highest preload and compressive bending strength values, followed by T4, then T3 (P<.001). CONCLUSION. The abutment material can influence the stability of the interface in internal conical connection type implant systems. The strength of the abutment material was inversely correlated with settlement, and positively correlated with compressive bending strength. Preload was inversely proportional to the frictional coefficient of the abutment material.

INFLUENCE OF TUNGSTEN CARBIDE/CARBON COATING ON THE PRELOAD OF IMPLANT ABUTMENT SCREWS (임플랜트 지대주 나사의 텅스텐 카바이드/탄소 코팅이 전하중에 미치는 영향에 관한 연구)

  • Choi Jin-Uk;Jeong Chang-Mo;Jeon Young-Chan;Lim Jang-Seop;Jeong Hee-Chan;Eom Tae-Gwan
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.44 no.2
    • /
    • pp.229-242
    • /
    • 2006
  • Statement of problem: In order to increase preload with reducing the friction coefficient, abutment screws coated with pure gold and Teflon as dry lubricant coatings have been introduced. But the reported data indicate that if screw repeated tightening and loosening cycle, an efficiency of increasing preload was decreased by screw surface wearing off. Purpose: This study was to evaluate the influence of tungsten carbide/carbon coating, which has superior hardness and frictional wear resistance, on the preload of abutment screws and the stability of coating surface after repeated closures. Material and method: The rotational values of abutment screws and the compressive forces between abutment and fixture were measured in implant systems with three different joint connections, one external butt joint and two internal cones. Moreover the stability and the alteration of coating surface were examined by comparison of the compressive force and the removable torque values during 10 consecutive trials, observation with scanning electron microscope and analyzed the elemental composition with energy dispersive x-ray spectroscopy Results and conclusion: 1. Application of coating resulted in significant increase of compressive force in all implant systems(P<.05). The increasing rate of compressive force by coating in external butt joint was gloater than those in internal cones (P<.05). 2. Coated screw showed the significant additional rotation compared to non-coated screw in all implant systems (P<.05). There were no significant differences in the increasing rate of rotation among implant systems (P>.05). 3. Removable torque values were greater with non-coated screw than that with coated screw (P<.05). 4. Coated screw showed insignificant variations in the compressive forces during 10 consecutive trials(P>.05) 5. After repeated trials, the surface layer of coated screw was maintained relatively well. However surface wearing and irregular titanium fragments were found in non-coated screw.

Influence of Tungsten Carbide/Carbon Coating on the Preload and Tightening Torque of Implant Abutment Screws (임플랜트 지대주 나사의 텅스텐 카바이드/탄소 코팅이 전하중 및 조임회전각에 미치는 영향)

  • Shin, Hyon-Mo;Cho, Wook;Jeong, Chang-Mo
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.25 no.1
    • /
    • pp.53-59
    • /
    • 2009
  • The purpose of this study was to clarify the clinical efficiency of tungsten carbide/carbon coating on obtaining optimal preload of abutment screw compared with non-coated screw in external-hex implant system. In the present work, rotational value and the compressive force between abutment and fixture of abutment screws without coating and with coating tightened to 30Ncm were measured. Mean compressive force of coated screw was 504.6N. Then uncoated screw was tightened to clamping the abutment and the implant to 504.6N, and the tightening torque value and the rotational value was recorded. The following conclusions were drawn within the limitation of this study. Compressive force of coated screw was higher than that of uncoated screw after tightening at 30Ncm. The tightening torque that was nedeed to clamping the uncoated screw equal to coated screw tightened to 30Ncm was 55.6Ncm. In case of equal compressive force, there was no significant difference in rotation value between coated and uncoated screw.

Characterization of Dacrotized Bolts (다크로 방식 처리된 볼트의 특성 평가)

  • Yang, Chi-Hoon;Ko, Jeong;Kim, Dae-Yong
    • Journal of Applied Reliability
    • /
    • v.1 no.2
    • /
    • pp.95-108
    • /
    • 2001
  • To enhance the corrosion resistance of a bolt by surface treatment, dacrotization was considered as a substitute for phosphate coating which is widely used for general applications. In this study, comparisons were made among 5 different kinds of surface treatments including dacrotization and phosphate coating with respect to corrosion resistance, adhesion property with painting, and preload when tightened. The result shows that the dacrotized and surface-stabilized bolt is much superior in every aspects studied herein to others. An excellent corrosion resistance and a fairly good adhesion property with painting were achieved in the dacrotized and surface-stabilized bolt. When tightened at the same torque, the amount of preload and its deviation of dacrotized and surface-stabilized bolt were comparable with those of phosphate coated bolt.

  • PDF