• Title/Summary/Keyword: Preisach Model

Search Result 83, Processing Time 0.037 seconds

Position Tracking Control of Flexible Piezo-beam Considering Actuator Hysteresis (작동기 히스테리시스를 고려한 유연피에조빔의 위치추적제어)

  • Nguyen, Phuong-Bac;Choi, Seung-Bok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.10a
    • /
    • pp.415-420
    • /
    • 2009
  • This paper presents a position tracking control of a flexible beam using the piezoelectric actuator. This is achieved by implementing both feedforward hysteretic compensator of the actuator and PID feedback controller. The Preisach model is adopted to develop the feedforward hysteretic compensator. In the design of the compensator, estimated displacement of the piezoceramic actuator is used on the basis of the limiting triangle database that results from collecting data of the main reversal curve and the first order ascending curves. Experimental implementation is conducted for position tracking control and performance comparison is made between a PID feedback controller without considering the effect of hysteresis, and a PID feedback controller integrated with the feedforward hysteretic compensator.

  • PDF

Vibration Control of MR Suspension System Considering Damping Force Hysteresis (댐핑력 히스테리시스를 고려한 MR 서스펜션의 진동제어)

  • Seong, Min-Sang;Sung, Kum-Gil;Han, Young-Min;Choi, Seung-Bok;Lee, Ho-Guen
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.381-386
    • /
    • 2007
  • This paper presents vibration control performances of a commercial magnetorheological (MR) suspension via new control strategy considering hysteresis of the field-dependent damping force of MR damper. A commercial MR damper which is applicable to high class passenger vehicle is adopted and its field-dependent damping force is experimentally evaluated. Preisach hysteresis model for the MR damper is identified using experimental first order descending (FOD) curves. Then, a feed-forward compensation strategy for the MR damper is formulated and integrated with a linear quadratic regulation (LQR) feedback controller for the suspension system. Control performances of the proposed control strategy for the MR suspension is experimentally evaluated with quarter vehicle test facility.

  • PDF

Vibration Control of MR Suspension System Considering Damping Force Hysteresis (댐핑력 히스테리시스를 고려한 MR 서스펜션의 진동제어)

  • Seong, Min-Sang;Sung, Kum-Gil;Han, Young-Min;Choi, Seung-Bok;Lee, Ho-Guen
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.3
    • /
    • pp.315-322
    • /
    • 2008
  • This paper presents vibration control performances of a commercial magnetorheological(MR) suspension via new control strategy considering hysteresis of the field-dependent damping force of MR damper. A commercial MR damper which is applicable to high class passenger vehicle is adopted and its field-dependent damping force is experimentally evaluated. Preisach hysteresis model for the MR damper is identified using experimental first order descending(FOD) curves. Then, a feed-forward compensation strategy for the MR damper is formulated and integrated with a linear quadratic regulation(LQR) feedback controller for the suspension system. Control performances of the proposed control strategy for the MR suspension is experimentally evaluated with quarter vehicle test facility.

Design of Rotary Magnetic Position Sensor with Sinusoidally Magnetized Permanent Magnet (정현적으로 착자된 영구자석을 갖는 마그네틱 위치센서 설계)

  • Jeong, Seung-Ho;Rhyu, Se-Hyun;Kwon, Byung-Il
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.3
    • /
    • pp.506-513
    • /
    • 2007
  • This paper proposes a rotary magnetic position sensor which has a sinusoidally magnetized permanent magnet with a small number of poles. To make the sinusoidal magnetic flux density distribution from the permanent magnet, a magnetizing future is optimized by the DOE(Design of Experiments) method. The magnetization process is analyzed using the Preisach model and 2 dimensional finite element method. The magnetic flux density distribution from the magnetized permanent magnet is very similar to ideal sine wave. The simulation result of the magnetic flux density distribution is compared with the experimental one. Also the availability of the proposed rotary type magnetic position sensor is confirmed by position calculation technique.

A Improved Method of Determining Everett Function with Logarithm Function and Least Square Method

  • Hong, Sun-Ki
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.7
    • /
    • pp.16-21
    • /
    • 2008
  • For Preisach model, Everett function from the transient curves is needed to simulate the hysteresis phenomena. However it becomes very difficult to get the function if the it would be made only from experiments. In this paper, a simple and stable procedure using least square method and logarithm function to determine the Everett function which follows the Gauss distribution for interaction field axis is proposed. The characteristics of the parameters used in this procedure are also presented. The proposed method is applied to implement hysteresis loops. The simulation for hysteresis loop is compared with experiments and good agreements could be shown.

Design Solutions to Minimize Iron Gore Loss in Synchronous Reluctance Motors Using Preisach Model & FEM (프라이자흐 모델이 결합된 유한요소 해석을 이용한 동기형 릴럭턴스 전동기의 철손 최소화 회전자 구조 설계)

  • Lee, D.D.;Lee, M.M.;Sim, J.M.;Lee, J.H.
    • Proceedings of the KIEE Conference
    • /
    • 2002.11d
    • /
    • pp.138-140
    • /
    • 2002
  • This paper deals with an automatic design procedure for the minimization of iron core loss in a synchronous reluctance motor (SynRM). The focus of this paper is the design relative to hysteresis loss on the basis of rotor shape of a SynRM in the same torque density. The coupled Finite Elements Analysis (FEA) & Preisach model have been used to evaluate the iron core loss with the rotor shape. The proposed procedure allows to define the rotor geometric dimensions starting from an existing motor or a preliminary design. The iron loss has been reduced with a rotor design variation.

  • PDF

Sensorless Vector Control Parameters Estimation of Synchronous Reluctance Motor Using a Coupled FEM & Preisach Model (유한요소법(FEM)과 프라이자흐모델을 사용한 동기형 릴럭턴스 모터의 센서리스 백터제어 제정수 산정)

  • Kim, Hong-Seok;Park, Jung-Min;Lee, Min-Myung;Lee, Jung-Ho;Chun, Jang-Sung
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.673-674
    • /
    • 2006
  • This study investigates the dynamic characteristics of Synchronous Reluctance Motor (SynRM), with segmental rotor structure, using finite element method in which the moving mesh technique is considered. The focus of this paper is the sensorless vector control parameters estimation of SynRM under saturation and iron loss. Comparisons are given with dynamic characteristics of normal single B-H nonlinear solutions and those of proposed FEM & Preisach model of synchronous reluctance motor, respectively.

  • PDF

Design Standard Computation based on A Rated Watt of Synchronous Reluctance Motor Using a Coupled FEM & Preisach Model (프라이자흐 모델이 결합된 유한요소법을 이용한 동기형 릴럭턴스 전동기의 용량에 따른 회전자 구조 설계)

  • Kwon Sun-Bum;Lee Mi-Jeong;Lee Jung-Ho
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.893-895
    • /
    • 2004
  • This paper deals with an automatic design standard computation based on a rated watt for a synchronous reluctance motor(SynRM). The focus of this paper is the design relative to the output power on the basis of rotor shape of a SynRM in each rated watt. The copuled Finite Elements Analysis(FEA) & Preisach model have been used to evaluate nonlinear solutions. The proposed procedure allows to define the rotor gemetric dimensions according to the rotor dia and rated watt starting from an existing motor or a preliminary design.

  • PDF

The On-line Identification System Characteristics Analysis of Synchronous Reluctance Motor Using a Coupled FEM & Preisach Model (유한요소법과 프라이자흐 모델을 이용한 동기형 릴럭턴스 전동기( Synchronous Reluctance Motor : SynRM)의 On-line 판정시스템 특성 해석)

  • Kim, Hong-Seok;Lee, Myoung-Ki;Lee, Min-Myung;Lee, Jung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1001-1002
    • /
    • 2007
  • This study investigates the dynamic characteristics of Synchronous Reluctance Motor (SynRM), with segmental rotor structure, using finite element method in which the moving mesh technique is considered. The focus of this paper is the efficiency of on-line parameter identification system for position sensorless control of a SynRM under saturation and iron loss. Comparisons are given with angle of the observer and those of proposed FEM & Preisach model of synchronous reluctance motor, respectively. The position sensorless control using identified motor parameters is realized, and the effective of the on-line parameter identification system is verified by experimental results.

  • PDF

Pre-Sliding Friction Control Using the Sliding Mode Controller with Hysteresis Friction Compensator

  • Choi, Jeong Ju;Kim, Jong Shik;Han, Seong Ik
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.10
    • /
    • pp.1755-1762
    • /
    • 2004
  • Friction phenomenon can be described as two parts, which are the pre-sliding and sliding regions. In the motion of the sliding region, the friction force depends on the velocity of the system and consists of the Coulomb, stick-slip, Streibeck effect and viscous frictions. The friction force in the pre-sliding region, which occurs before the breakaway, depends on the position of the system. In the case of the motion of the friction in the sliding region, the LuGre model describes well the friction phenomenon and is used widely to identify the friction model, but the motion of the friction in the pre-sliding such as hysteresis phenomenon cannot be expressed well. In this paper, a modified friction model for the motion of the friction in the pre-sliding region is suggested which can consider the hysteresis phenomenon as the Preisach model. In order to show the effectiveness of the proposed friction model, the sliding mode controller (SMC) with hysteresis friction compensator is synthesized for a ball-screw servo system.