• Title/Summary/Keyword: Preimplantation

Search Result 298, Processing Time 0.031 seconds

Traf4 is required for tight junction complex during mouse blastocyst formation

  • Lee, Jian;Choi, Inchul
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.36 no.4
    • /
    • pp.307-313
    • /
    • 2021
  • Traf4 (Tumor necrosis factor Receptor Associated Factor 4) is a member of the tumor necrosis factor receptor (TNFR) - associated factors (TRAFs) family. TRAF4 is overexpressed in tumor cells such as breast cancer and associated with cytoskeleton and membrane fraction. Interestingly, TRAF4 was localized with tight junctions (TJs) proteins including OCLN and TJP1 in mammary epithelial cells. However, the expression patterns and biological function of Traf4 were not examined in preimplantation mouse embryos although Traf4-deficient mouse showed embryonic lethality or various dramatic malformation. In this study, we examined the temporal and spatial expression patterns of mouse Traf4 during preimplantation development by qRT-PCR and immunostaining, and its biological function by using siRNA injection. We found upregulation of Traf4 from the 8-cell stage onwards and apical region of cell - cell contact sites at morula and blastocyst embryos. Moreover, Traf4 knockdown led to defective TJs without alteration of genes associated with TJ assembly but elevated p21 expression at the KD morula. Taken together, Traf4 is required for TJs assembly and cell proliferation during morula to blastocyst transition.

Rho-associated Kinase is Involved in Preimplantation Development and Embryonic Compaction in Pigs

  • Son, Myeong-Ju;Park, Jin-Mo;Min, Sung-Hun;Park, Hum-Dai;Koo, Deog-Bon
    • Journal of Embryo Transfer
    • /
    • v.25 no.2
    • /
    • pp.103-110
    • /
    • 2010
  • The first morphogenetic event of preimplantation development, compaction, was required efficient production of porcine embryos in vitro. Compaction of the porcine embryo, which takes place at post 4-cell stage, is dependent upon the adhesion molecule E-cadherin. The E-cadherin through ${\beta}$-catenin contributes to stable cell-cell adhesion. Rho-associated kinase (ROCK) signaling was found to support the integrity of E-cadherin based cell contacts. In this study, we traced the effects of ROCK-1 on early embryonic development and structural integrity of blastocysts in pigs. Then, in order to gain new insights into the process of compaction, we also examined whether ROCK-1 signaling is involved in the regulation of the compaction mediated by E-cadherin of cellular adhesion molecules. As a result, real-time RT-PCR analysis showed that the expression of ROCK-1 mRNA was presented throughout porcine preimplantation stages, but not expressed as consistent levels. Thus, we investigated the blastocyst formation of porcine embryos treated with LPA and Y27632. Blastocysts formation and their qualities in LPA treated group increased significantly compared to those in the Y27632-treated group (p < 0.05). Then, to determine whether ROCK-1 associates embryonic compaction, we explored the effect of activator and/or inhibitor of ROCK-1 on compaction of embryos in pigs. The rate of compacted morula in LPA treated group was increased compared to that in the Y27632-treated group (39.7 vs 12.0%). Furthermore, we investigated the localization and expression pattern of E-cadherin at 4-cell stage porcine embryos in both LPA- and Y27632-treated groups by immunocytochemical analysis and Western blot analysis. The expression of E-cadherin was increased in LPA-treated group compared to that in the Y27632-treated group. The localization of E-cadherin in LPA-treated group was enriched in part of blastomere contacts compared to that Y27632-treated group. ROCK-1 as a crucial mediator of embryo compaction may plays an important role in regulating compaction through E-cadherin of the cell adhesion during the porcine preimplantation embryo. We concluded that ROCK-1 gene may affect the developmental potential of porcine blastocysts through regulating embryonic compaction.

Expression and Possible Role of Phospholipase C $\beta1$ and $\gamma1$ in Mouse Oocyte Maturation and Preimplantation Embryo Development (생쥐 난자의 성숙과 착상전 배발생에서의 Phospholipase C $\beta1$$\gamma1$의 발현 및 기능)

  • Lee, Young-Hyun;Geum, Dong-Ho;Shim, Chan-Seob;Suh, Phan-Gil;Kim, Kyung-Jin
    • Development and Reproduction
    • /
    • v.2 no.1
    • /
    • pp.9-20
    • /
    • 1998
  • It has been wel known that phospholipase C(PLC) plays an important role in the intracellular signaling in a variety of cell types. However, involvement of PLC in mouse oocyte maturation and preimplantation embryo development remains unknown. The present study examined the expression patterns of the mouse PLC \beta 1 and \gamma 1 during oocyte maturatio and preimplantation embryo development study examined the expression patterns of the mouse PLC \beta 1 and \gamma 1 during oocyte maturation and preimplantation embryo development by the competitive reverse transcription-polymerase chain reaction (RT-PCR method). PLC \gamma 1 mRNA (0.1 fg) was readily detected in germinal vesicle (GV)-stage oocyte and its level was reduced as meiotic resumption proceeded. PLC-\beta 1 mRNA (<0.1 fg) as detected at low level at GV-stage oocytes and scarcely detected at germinal vescle breakdown (GVBD)-stage oocytes. After fertilization, both PLC \beta 1 and \gamma 1 mRNA levels began to increase at morula-stage embryos (0.2 fg) and were more prominent in blastocyst-stage embryos(1 fg). to elucidate the possible involvement of PLC via protein kinase C(PKC) pathway during oocyte maturation and preimplantation embryo development , the effects of sphingosine (PKC inhibitor), sn-$diC_{8}$(PKC activator) anc U73122 (PLC ingibitor) were examined. Treatment of GV-stage oocytes with sphingosine (20 \mu M) facilitated the meiotic resuption by 10-20 over the control within 1 h as judged by GVBD, whereas U73122 failed to show any significant effect. U73122 (10 \mu M) effectively blocked the compaction of morula, while sn-$diC_{8}$(50 \mu M). In summary, the present study shows that the mouse PLC \beta 1 and \gamma 1 are expressed in a developmental stage-specific manner and PLC-PKC pathway may be involved in early preimplantation embryo development.

  • PDF